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_____________________________________________________ 

 
ABSTRACT 

There is a need to classify patients at genetic risk for drug seeking behavior prior to or upon entry to 
residential and or non-residential chemical dependency programs. We have determined based on a 
literature review, that there are seven risk alleles associated with six candidate genes that were 
studied in this patient population of recovering poly-drug abusers. To determine risk severity of 
these 26 patients we calculated the percentage of prevalence of the risk alleles and provided a 
severity score based on percentage of these alleles. Subjects carry the following risk alleles: 
DRD2=A1; SLC6A3 (DAT) =10R; DRD4=3R or 7R; 5HTTlRP = L or LA; MAO= 3R; and COMT=G. As 
depicted in table 2 low severity (LS) = 1-36%; Moderate Severity =37-50%, and High severity = 51-
100%. We studied two distinct ethnic populations group 1 consisted of 16 male Caucasian psycho 
stimulant addicts and group 2 consisted of 10 Chinese heroin addicted males. Based on this model 
the 16 subjects tested have at least one risk allele or 100%. Out of the 16 subjects we found 50% (8) 
HS; 31% (5) MS; and 19% LS (3 subjects). These scores are then converted to a fraction and then 
represented as a Genetic Addiction Risk Score (GARS) whereby we found the average GARS to be: 
0.28 low severity, 0.44 moderate severity and 0.58 high severity respectively. Therefore, using this 
GARS we found that 81% of the patients were at moderate to high risk for addictive behavior. Of 
particular interest we found that 56% of the subjects carried the DRD2 A1 allele (9/16). Out of the 9 
Chinese heroin addicts [one patient not genotyped] (group 2) we found 11% (1) HS; 56% (5) MS; and 
33% LS (3 subjects). These scores are then converted to a fraction and then represented as GARS 
whereby we found the average GARS to be: 0.28 Low Severity; 0.43 moderate severity and 0.54 high 
severity respectively. Therefore, using GARS we found that 67% of the patients were at moderate to 
high risk for addictive behavior. Of particular interest we found that 56% of the subjects carried the 
DRD2 A1 allele (5/9) similar to group 1. Statistical analysis revealed that the groups did not differ in 
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terms of overall severity (67 vs. 81%) in these two distinct populations. Combining these two 
independent study populations reveal that subjects entering a residential treatment facility for poly-
drug abuse carry at least one risk allele (100%). We found 74% of the combined 25 subjects 
(Caucasian and Chinese) had a moderate to high GARS. Confirmation of these exploratory results 
and development of mathematical predictive values of these risk alleles are necessary before any 
meaningful interpretation of these results are to be considered.  

 
_____________________________________________________ 

 
Keywords: Genetic Addiction Risk Score (GARS); polymorphic genes; Neurotransmitters; Dopamine; Reward Deficiency 
Syndrome (RDS)  
 
 

 
[I] INTRODUCTION  
 
Over half a century of dedicated and rigorous scientific research 
on the meso-limbic system provided insight into the addictive 
brain and the neurogenetic mechanisms involved in man’s quest 
for happiness. In brief, the site of the brain where one 
experiences feelings of well being is the meso-limbic system. 
This part of the brain has been termed the “reward center”.  
Chemical messages including serotonin, enkephalins, GABA 
and dopamine (DA), work in concert to provide a net release of 
DA at the nucleus accumbens (NAc), a region in the mesolimbic 
system.  It is well known that genes control the synthesis, 

vesicular storage, metabolism, receptor formation and 
neurotransmitter catabolism. The polymorphic-versions of these 
genes have certain variations which could lead to an impairment 
of the neurochemical events involved in the neuronal release of 
DA. The cascade of these neuronal events has been termed 
“Brain Reward Cascade” [1] [Figure-1]. A breakdown of this 
cascade will ultimately lead to a dysregulation and dysfunction 
of DA.  Since DA has been established as the “pleasure 
molecule” and the ”anti-stress molecule,” any reduction in 
function could lead to reward deficiency and resultant aberrant 
substance seeking behavior and a lack of wellness [2].  

 

Fig: 1. Brain Reward Cascade. (A) Schematic represents the normal physiologic state of the neurotransmitter interaction at the 
mesolimbic region of the brain.  Briefly in terms of the “Brain Reward Cascade” first coined by Blum and Kozlowski [90]: serotonin in 
the hypothalamus stimulates  neuronal projections  of methionine enkephalin in the hypothalamus which in turn inhibits the release of 
GABA in the substania nigra thereby allowing for the normal amount of Dopamine to be released at the NAc ( reward site of Brain). 
(B) Represents hypodopaminergic function of the mesolimbic region of the brain.  It is possible that the hypodopaminergic state is 
due to gene polymorphisms as well as environmental elements including both stress and neurotoxicity from aberrant abuse of 
psychoactive drugs (i.e. alcohol, heroin, cocaine etc). Genetic variables could include serotonergic genes (serotonergic receptors 
[5HT2a]; serotonin transporter 5HTlPR); endorphinergic genes (mu OPRM1 gene; proenkephalin (PENK) [PENK polymorphic 3' UTR 
dinucleotide (CA) repeats}; GABergic gene (GABRB3) and dopaminergic genes (ANKKI Taq A; DRD2 C957T, DRD4 7R, COMT 
Val/met substation, MAO-A uVNTR, and SLC6A3 9 or 10R). Any of these genetic and or environmental impairments could result in 
reduced release of dopamine and or reduced number of dopaminergic receptors. 
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Homo sapiens are biologically predisposed to drink, eat, 
reproduce and desire pleasurable experiences.  Impairment in 
the mechanisms involved in these natural processes lead to 
multiple impulsive, compulsive and addictive behaviors 
governed by genetic polymorphic antecedents.  While there are 
a plethora of genetic variations at the level of mesolimbic 
activity, polymorphisms of the serotonergic- 2A receptor (5-
HTT2a); serotonergic transporter (5HTTLPR); (dopamine D2 
receptor (DRD2), Dopamine D4 receptor (DRD4) ; Dopamine 
transporter (DAT1);   and the Catechol-o-methyl –transferase 
(COMT) , monoamine –oxidase (MOA) genes as well as other 
candidate genes predispose individuals to excessive cravings 
and resultant aberrant behaviors [3]. 

An umbrella term to describe the common genetic antecedents 
of multiple impulsive, compulsive and addictive behaviors is 
Reward Deficiency Syndrome (RDS). Individuals possessing a 
paucity of serotonergic and/or dopaminergic receptors and an 
increased rate of synaptic DA catabolism, due to high catabolic 
genotype of the COMT gene, or high MOA activity are 
predisposed to self-medicating with any substance or behavior 
that will activate DA release including alcohol, opiates, 
psychostimulants, nicotine, glucose, gambling, sex, and even 
excessive internet gaming, among others [4]. Use of most drugs 
of abuse, including alcohol, is associated with release of 
dopamine in the mesocorticolimbic system or “reward pathway 
of the brain [5]. Activation of this dopaminergic system induces 
feelings of reward and pleasure [6, 7].  However, reduced 
activity of the dopamine system (hypodopaminergic 
functioning) can trigger drug-seeking behavior [8, 9]. Variant 
alleles can induce hypodopaminergic functioning through 
reduced dopamine receptor density, blunted response to 
dopamine, or enhanced dopamine catabolism in the reward 
pathway [10]. Possibly, cessation of chronic drug use induces a 
hypodopaminergic state that prompts drug-seeking behavior in 
an attempt to address the withdrawal –induced state [11].  

Acute utilization of these substances can induce a feeling of 
well being. But, unfortunately sustained and prolonged abuse 
leads to a toxic pseudo feeling of well being resulting in 
tolerance and dis-ease or discomfort. Thus, low DA receptors 
due to carrying the DRD2 A1 allelic genotype results in 
excessive cravings and consequential behavior, whereas normal 
or high DA receptors results in low craving induced behavior. In 
terms of preventing substance abuse, or excessive glucose 
craving, one goal would be to induce a proliferation of DA D2 
receptors in genetically prone individuals [12].  Experiments in 
vitro have shown that constant stimulation of the DA receptor 
system via a known D2 agonist in low doses results in 
significant proliferation of D2 receptors in spite of genetic 
antecedents [13]. In essence, D2 receptor stimulation signals 
negative feedback mechanisms in the mesolimbic system to 
induce mRNA expression causing proliferation of D2 receptors. 
This molecular finding serves as the basis to naturally induce 
DA release to also cause the same induction of D2-directed 
mRNA and thus proliferation of D2 receptors in the human. 

This proliferation of D2 receptors in turn, will induce the 
attenuation of craving behavior.  In fact this has been proven 
with work showing DNA–directed over-expression (a form of 
gene therapy) of the DRD2 receptors and significant reduction 
in both alcohol and cocaine craving-induced behavior in animals 
[14, 15].  

These observations are the basis for the development of a 
functional hypothesis of drug –seeking and drug use. The 
hypothesis is that the presence of a hypodopaminergic state, 
regardless of the source, is a primary cause of drug –seeking 
behavior. Thus, genetic polymorphisms that induce 
hypodopaminergic functioning may be the causal mechanism of 
a genetic predisposition to chronic drug use and relapse [12]. 
Finally, utilizing the long term dopaminergic activation 
approach will ultimately lead to a common safe and effective 
modality to treat RDS behaviors including Substance Use 
Disorders (SUD), Attention Deficit Hyperactivity Disorder 
(ADHD), and Obesity among other reward deficient aberrant 
behaviors. 

Support for the impulsive nature of individuals possessing 
dopaminergic gene variants is derived from a number of 
important studies illustrating the genetic risk for drug-seeking 
behaviors based on association and linkage studies implicating 
these alleles as risk antecedents having impact in the 
mesocorticolimbic system [12].  

1.1 D2 dopamine receptor gene (DRD2) 

The dopamine D2 receptor gene (DRD2) first associated by 
Blum et al [17] with severe alcoholism is the most widely 
studied candidate gene in psychiatric genetics. The Taq1 A is a 
single nucleotide polymorphism (SNP rs: 1800497) originally 
thought to be  located at the 3’ untranslated region of the DRD2 
but now has been shown to be located within exon 8 of an 
adjacent  gene, the ankyrin repeat and kinase domain containing 
1 (ANKK1) [18]. Importantly, while there may be distict 
differences in function, Neville et al [18] suggest that the miss-
location of the Taq1 A may be attributable to the ANKKI and 
the DRD2 being on the same haplotype or the ANKKI being 
involved in reward processing through a signal transduction 
pathway. The ANKKI and the DRD2 gene polymorphisms may 
have distinct different actions with regard to brain function as 
has been noted in recent experiments and fear related 
conditioning in alcoholics [19, 20]. Grandy et al. [21] reported 
on the presence of the two alleles of the Taq1 A: the A1 and A2 
. Presence of the A1+ genotype (A1/A1, A1 /A2) compared to 
the A– genotype (A2/A2), is associated with reduced D2 
receptor density [22, 23]. This reduction causes 
hypodopaminergic functioning in the dopamine reward 
pathway. Noble [24] in reviewing the literature concluded that 
research supports a predictive relationship from the A1+ 
genotype to drug seeking behavior. This has  been  also 
discussed by Blum et al [3, 25] reporting  that presence of the 
A+ genotype  using Bayesian analysis has  a predictive value of 
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74% for a number of RDS behaviors. Other DRD2 
polymorphisms such as the C [57T, a SNP (rs:  6277)] at exon 7 
also associates with a number of RDS behaviors including drug 
use [26, 27, 28]. Compared to the T– genotype (C/C), the T+ 

genotype (T/T, T/C) is associated with reduced translation of 
DRD2 mRNA and diminished DRD2 mRNA [26], leading to 
reduced DRD2 density [27]. Hill et al. [28] has shown the 
predictive relationship between the T+ allele and alcohol 
dependence. This results in hypodopaminergic function and is 
also a predictive risk allele.  

The association of the DRD2 A1 allele in alcoholism is well 
established showing in a 10 year follow up that carriers of the 
DRD2 A1 allele have a higher rate of mortality compared to 
carriers of the A2 allele in alcohol dependent individuals [29]. 
There are 390 PUBMED reports [6/5/2010] providing 
significant support. The dopamine D2 receptor (DRD2) plays an 
important role in the reinforcing and motivating effects of 
ethanol. Several polymorphisms have been reported to effect 
receptor expression. The amount of DRD2, expressed in a given 
individual, is the result of the expression of both alleles, each 
representing a distinct haplotype.  

Most recently, Kraschewski et al. [30] found that the haplotypes 
I-C-G-A2 and I-C-A-A1 occurred with a higher frequency in 
alcoholics [P=0.026, odds ratio (OR): 1.340; P=0.010, OR: 
1.521, respectively]. The rare haplotype I-C-A-A2 occurred less 
often in alcoholics (P=0.010, OR: 0.507), and was also less 
often transmitted from parents to their affected offspring (1 
vs.7). Among the subgroups, I-C-G-A2 and I-C-A-A1 had a 
higher frequency in Cloninger 1 alcoholics (P=0.083 and 0.001, 
OR: 1.917, respectively) and in alcoholics with a positive family 
history (P=0.031, OR: 1.478; P=0.073, respectively). Cloninger 
2 alcoholics had a higher frequency of the rare haplotype D-T-
A-A2 (P<0.001, OR: 4.614) always compared with controls. In 
patients with positive family history haplotype I-C-A-A2 
(P=0.004, OR: 0.209), and in Cloninger 1 alcoholics haplotype 
I-T-A-A1 (P=0.045 OR: 0.460) were less often present. They 
confirmed the hypothesis that haplotypes, which are supposed to 
induce a low DRD2 expression, are associated with alcohol 
dependence. Furthermore, supposedly high-expressing 
haplotypes weakened or neutralized the action of low-
expressing haplotypes. 

1.2 D4 dopamine receptor gene (DRD4) 

There is evidence that the length of the D4 dopamine receptor 
(DRD4) exon 3 variable number of tandem repeats (VNTR) 
affects DRD4 functioning by modulating the expression and 
efficiency of maturation of the receptor [31]. The 7 repeat (7R) 
VNTR requires significantly higher amounts of dopamine to 
produce a response of the same magnitude as other size VNTRs 
[32]. This reduced sensitivity or “dopamine resistance” leads to 
hypodopaminergic functioning.  Thus 7R VNTR has been 
associated with substance –seeking behavior [32, 33]. However 
not all reports support this association [34].  Most recently 

Biederman et al. [35] evaluated a number of putative risk alleles 
using survival analysis, revealed that by 25 years of age 76% of 
subjects with a DRD4 7-repeat allele were estimated to have 
significantly more persistent ADHD compared with 66% of 
subjects without the risk allele. In contrast, there were no 
significant associations between the course of ADHD and the 
DAT1 10-repeat allele (P=0.94) and 5HTTLPR long allele. 
Their findings suggest that the DRD4 7-repeat allele is 
associated with a more persistent course of ADHD. This is 
consistent with our finding of the presence of the 7R DAT 
genotype in the heroin addict.  Moreover in a  study by 
Grzywacz et al. [36] which evaluated the role of dopamine D4 
receptor (DRD4) exon 3 polymorphisms (48 bp VNTR) in the 
pathogenesis of alcoholism, they found significant differences in 
the short alleles (2-5 VNTR) frequencies between controls and 
patients with a history of delirium tremens and/or alcohol 
seizures (p = 0.043). A trend was also observed in the higher 
frequency of short alleles amongst individuals with an early age 
of onset of alcoholism (p = 0.063). The results of this study 
suggest that inherited short variants of DRD4 alleles (3R) may 
play a role in pathogenesis of alcohol dependence and carriers 
of the 4R may have a protective effect for alcoholism risk 
behaviors. It is of further interest that work from Kotler et al. 
[37] in heroin addicts illustrated that central dopaminergic 
pathways figure prominently in drug-mediated reinforcement 
including novelty seeking, suggesting that dopamine receptors 
are likely candidates for association with substance abuse in 
man. These researchers show that the 7-repeat allele is 
significantly over-represented in the opioid-dependent cohort 
and confers a relative risk of 2.46.  

1.3 Dopamine Transporter gene (DAT1) 

The dopamine transporter protein regulates dopamine –mediated 
neurotransmission by rapidly accumulating dopamine that has 
been released into the synapse [38]. The dopamine transporter 
gene (SLC6A3 or DAT1) is localized to chromosome 5p15.3. 
Moreover, within 3 non-coding region of DAT1 lies a VNTR 
polymorphism [38]. There are two important alleles that may 
independently increase risk for RDS behaviors.  The 9 repeat 
(9R) VNTR has been shown to influence gene expression and to 
augment transcription of the dopamine transporter protein [39]. 
Therefore this results in an enhanced clearance of synaptic 
dopamine, yielding reduced levels of dopamine to activate 
postsynaptic neurons. Presence of the 9R VNTR has been linked 
to Substance Use Disorder (S.U.D.) [40] not consistently [41].  
Moreover in terms of RDS behaviors, Cook et al. [42] was the 
first group that associated tandem repeats of the dopamine 
transporter gene (DAT) in the literature. While there have been 
some  inconsistencies associated with the earlier results the 
evidence is mounting in favor of the view that the 10R allele of 
DAT is associated with high risk for ADHD in children and in 
adults alike. Specifically, Lee et al. [43] found consistent 
support in several studies, the non-additive association for the 
10-repeat allele was significant for hyperactivity-impulsivity 
(HI) symptoms. However, consistent with other studies, 
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exploratory analyses of the non-additive association of the 9-
repeat allele of DAT1 with HI and oppositional defiant disorder 
(ODD) symptoms also were significant. 
 
1.4 Catechol-O-methyltransferase (COMT)  
 
The catechol-O-methyltransferase (COMT) is an enzyme 
involved in the metabolism of dopamine, adrenaline and 
noradrenaline. The Val158Met polymorphism of the COMT 
gene has been previously associated with a variability of the 
COMT activity, and alcoholism. Serý [44] found a relationship 
between the Val158Met polymorphism of the COMT gene and 
alcoholism in male subjects. Serý [44] found the significant 
difference between male alcoholics and male controls in allele 
and genotype frequencies (p<0,007; and p<0, 04 respectively. 
Interestingly in one of the subjects genotyped herein, who 
battles with heroin as an addiction while carrying the DRD2 A1 
allele also carried the low enzyme COMT activity genotype 
(A/A). This is agreement with the work of Cao et al. [45] who 
did not find an association with the high G/G and heroin 
addiction. No differences in genotype and allele frequencies of 
108 val/met polymorphism of COMT gene were observed 
between heroin-dependent subjects and normal controls 
(genotype-wise: chi-square=1.67, P=0.43; allele-wise: chi-
square=1.23, P=0.27). No differences in genotype and allele 
frequencies of 900 Ins C/Del C polymorphism of COMT gene 
were observed between heroin-dependent subjects and normal 
controls (genotype-wise: chi-square=3.73, P=0.16; allele-wise: 
chi-square=0.76, P=0.38). While there is still some controversy 
regarding the COMT association with heroin addiction it was 
also interesting that the A allele of the val/met polymorphisms (-
287 A/G) found by Cao et al. [45] was found to be much higher 
in heroin addicts than controls.  Faster metabolism results in 
reduced dopamine availability at the synapse, which reduces 
postsynaptic activation, inducing hypodopaminergic 
functioning. Generally Vanderbergh et al [46] and Wang et al 
[47] support an association with the Val allele and SUD but 
others do not [48].  
 
1.5 Monoamine –Oxidase A 
 
Monoamine oxidase-A (MAOA) is a mitochondrial enzyme that 
degrades the neurotransmitters serotonin, norepinephrine, and 
dopamine. This system is involved with both psychological and 
physical functioning. The gene that encodes MAOA is found on 
the X chromosome and contains a polymorphism (MAOA-
uVNTR) located 1.2 kb upstream of the MAOA coding 
sequences [49]. In this polymorphism, consisting of a 30-base 
pair repeated sequence, six allele variants containing either 2-, 
3-, 3.5-, 4-, 5-, or 6-repeat copies have been identified [50]. 
Functional studies indicate that certain alleles may confer lower 
transcriptional efficiency than others. The 3-repeat variant 
conveys lower efficiency, whereas 3.5- and 4-repeat alleles 
result in higher efficiency [51]. The 3- and 4-repeat alleles are 
the most common, and to date there is less consensus regarding 
the transcriptional efficiency of the other less commonly 

occurring alleles (e.g., 2-, 5-, and 6-repeat). The primary role of 
MAOA in regulating monoamine turnover, and hence ultimately 
influencing levels of norepinephrine, dopamine, and serotonin, 
indicates that its gene is a highly plausible candidate for 
affecting individual differences in the manifestation of 
psychological traits and psychiatric disorders [52]. For example, 
recent evidence indicates that the MAOA gene may be 
associated with depression [53] and stress [54]. However, 
evidence regarding whether higher or lower MAOA gene 
transcriptional efficiency is positively associated with 
psychological pathology as been mixed. The low-activity 3-
repeat allele of the MAOA-uVNTR polymorphism has been 
positively related to symptoms of antisocial personality [55] and 
cluster B personality disorders. Other studies, however, suggest 
that alleles associated with higher transcriptional efficiency are 
related to unhealthy psychological characteristics such as trait 
aggressiveness and impulsivity. Low MAO activity and the 
neurotransmitter dopamine are 2 important factors in the 
development of alcohol dependence. MAO is an important 
enzyme associated with the metabolism of biogenic amines. 
Therefore, Huang et al. [56] investigated whether the 
association between the dopamine D2 receptor (DRD2) gene 
and alcoholism is affected by different polymorphisms of the 
MAO type A (MAOA) gene. The genetic variant of the DRD2 
gene was only associated with the anxiety, depression 
(ANX/DEP) ALC phenotype, and the genetic variant of the 
MAOA gene was associated with ALC. Subjects carrying the 
MAOA 3-repeat allele and genotype A1/A1 of the DRD2 were 
3.48 times (95% confidence interval = 1.47-8.25) more likely to 
be ANX/DEP ALC than the subjects carrying the MAOA 3-
repeat allele and DRD2 A2/A2 genotype. The MAOA gene may 
modify the association between the DRD2 gene and ANX/DEP 
ALC phenotype. Overall, Vanyukov et al. suggested that, 
although not definitive, variants in MAOA account for a small 
portion of the variance of SUD risk, possibly mediated by 
liability to early onset behavioral problems [57]. 
 
1.6 Serotonin Transporter gene  

The human serotonin (5-hydroxytryptamine) transporter, 
encoded by the SLC6A4 gene on chromosome 17q11.1-q12, is 
the cellular reuptake site for serotonin and a site of action for 
several drugs with central nervous system effects, including 
both therapeutic agents (e.g. antidepressants) and drugs of abuse 
(e.g. cocaine). It is known that the serotonin transporter plays an 
important role in the metabolic cycle of a broad range of 
antidepressants, antipsychotics, anxiolytics, antiemetics, and 
anti-migraine drugs. Salz et al. [58] found an excess of -1438G 
and 5-HTTLPR L carriers in alcoholic patients in comparison to 
the heroin dependent group (OR (95% CI)=1.98 (1.13-3.45) and 
1.92 (1.07-3.44), respectively). The A-1438G and 5-HTTLPR 
polymorphisms also interacted in distinguishing alcohol from 
heroin dependent patients (df) =10.21 (4), p=0.037). The 
association of -1438A/G with alcohol dependence was 
especially pronounced in the presence of 5-HTTLPR S/S, less 
evident with 5-HTTLPR L/S and not present with 5-HTTLPR 
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L/L. SCL6A4 polymorphism haplotypes were similarly 
distributed in all three groups. Moreover, Seneviratne et al. [59] 
found that G allele carriers for rs1042173 were associated with 
significantly lower drinking intensity (p = 0.0034) compared to 
T-allele homozygotes. In HeLa cell cultures, the cells 
transfected with G allele showed a significantly higher mRNA 
and protein levels than the T allele-transfected cells. These 
findings suggest that the allelic variations of rs1042173 affect 
drinking intensity in alcoholics possibly by altering serotonin 
transporter expression levels. This provides additional support 
to the hypothesis that SLC6A4 polymorphisms play an 
important role in regulating propensity for severe drinking.  
 
 
1.7 Combination of Genes and Addiction Risk 

In general, inconsistencies in the literature involving association 
studies using single gene analysis prompted Conner et al. [60] 
and others to evaluate a number of dopaminergic gene 
polymorphisms  as predictors of drug use in adolescents. We 
can’t ignore the importance of neurochemical mechanisms 
involved in drug induced relapse behavior as suggested by 
Bossert et al. [61] understanding the interaction of multiple 
genes and environmental  elements.  These investigators have 
found using a drug relapse model, previously shown to induce 
relapse by re-exposing rats to heroin-associated contexts.  After 
extinction of drug-reinforced responding in different contexts, 
re-exposure reinstates heroin seeking. This effect is attenuated 
by inhibition of glutamate transmission in the ventral tegmental 
area and medial accumbens shell, components of the 
mesolimbic dopamine system. This process enhances DA net 
release in the NAc. This fits well with Li’s KARG addiction 
network map [62].  

Since the initial finding of Blum et al. [17] showing positive 
association of a single gene DRD2 polymorphisms and severe 
alcoholism to date the replication, although favorable,  has been  
fraught with inconsistent results. This has been true for other 
complex behaviors as well (NCI-NHGRI Working Group on 
Replication in Association studies 2007).  Moreover, when 
gene-gene and environment interactions are tested the findings 
support the concept that complex gene –relationships may 
account for inconsistent findings across many different single 
gene studies [63]. 

There are many different reasons for inconsistencies in trying to 
predict drug use including single gene analysis, stratification of 
population,  poor screened controls,  gender–base differences, 
personality traits, co-morbidity of psychiatric disorders, positive 
and negative life events  and even neurocognitive functioning 
[64, 65]. 

Thus, instead of continuing to evaluate single gene associations 
to predict future drug abuse, it occurred to us that we should 
embark on a study to evaluate multiple candidate gene 
candidates especially linked to the Brain Reward Cascade and 

hypodopaminergic functioning to gain a more complex but 
stronger predictive set of genetic antecedents.  Our goal albeit 
exploratory in nature is to develop an informative panel to 
provide a means of stratifying or classifying patients entering a 
treatment facility as having low, moderate or high genetic  
predictive risk based on a number of known  risk alleles. We are 
coining the term Genetic Addiction Risk Score (GARS) for 
purposes of study identification.   

[II] MATERIALS AND METHODS  
  

 2.1 Subjects  

The genotype data utilized in this paper is derived from previously 
published papers concerned with qEEG response from a natural 
Dopamine D2 agonist called Synaptose™ [64, 65] but the data set was 
never combined as accomplished herein.. The 16 patients were 
interviewed and evaluated for chemical dependence using a standard 
battery of diagnostic tests and questionnaires. The tests included the 
following: Drug History Questionnaire; Physical Assessment, Urine Drug 
Tests; breathalyzer; Complete CBC blood test; and Symptom Severity 
Questionnaire. The patients were determined to be substance dependent 
according to Diagnostic and Statistical Manual [DSM-IV] criteria. All 
patients were residential patients at G & G Holistic Addiction Treatment 
Center, North Miami Beach, Florida [14 patients] and  the Bridging the 
Gaps, Winchester, Virginia [2 patients] treatment programs (30-90 day 
chemical dependence rehabilitation  program). All subjects signed an 
approved consent form (approved by the IRB at PATH Foundation   NY, 
New York, New York, registration # IRB00002334] and agreed to 
volunteer for this feasibility study. For protection of the patients the 
genotyping data conformed to standard HIPPA and GINA practices 
mandated by law.  
 
Table-1 shows the demographics of the overall population including 
gender, race, age and length of abstinence. In this study there were a 
total of sixteen individuals. There were 16 Males and 0 females with a 
median age of 29.5 ± 8.8 SD years. The population breakdown was as 
follows:  87.5% Caucasian, and 12.5 Percent Hispanic. The average 
number of months abstinent for the entire population was 9.5 ±23.3. 
There were 3 pure cocaine only addicts; 4 cocaine crack addicts; 9 
cocaine plus other drugs of abuse (alcohol, opiates and marijuana).  
 
Table 1. Demographics of all Caucasian subjects combined 
 

 Median 
±st.dev. 

 

(min, max) N (total = 
16) 

 Age 29.5 ±8.80 (19, 48) 16 
Clean time (months)  9.5 ±23.33 (2, 101) 16 

Race = Caucasian   14 
Race = Hispanic   2 
Sex = Male   16 
Primary Substance = Cocaine only  3 
Primary Substance = Crack cocaine  4 
Primary Substance = Cocaine + 
Other 

 9 

 
In Table-2 we have also included genotype data from a fMRI study in 
China evaluating the effects of Synaptose™ in  ten heroin addicted 
Chinese males. Table-2 provides demographic information pertaining to 
this group. Diagnosis of heroin dependence was also determined in this 
group using DSM-IV criteria and other behavioral instruments. There 
were 10 Males and 0 females with a median age of 33 ± 7.6 SD years. 
The population breakdown was as follows:  100% Chinese. The average 
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number of months abstinent for the entire population was 16 ± 7.9. There 
were 10 pure heroin only addicts.  
 
2.2 Genotyping 
 
A brief description of the genotyping methods for the polymorphisms to 
be assayed in this project follows. All methods are routinely performed in 
the Institute of Behavioral genetics (IBG), Boulder, Colorado laboratory. 
Each patient was also genotyped for the following gene polymorphisms: 
MAOA-VNTR, 5HTTLPR, SLC6A3, DRD4, ANKKI. DRD2 TaqIA 
(rs1800497) and the COMT val158met SNP (rs4680). Genotypes were 
scored by two investigators independently.   
  
The dopamine transporter (DAT1, locus symbol SLC6A3, which 
maps to 5p15.3, contains a 40 base-pair Variable Number Tandem 
Repeat (VNTR) element consisting of 3-11 copies in the 3' untranslated 
region (UTR) of the gene [66]. The assay [67] is a modification of the 
method of Vandenbergh et al. [66]. Primer sequences were: Forward- 5’-
TGTGGTGTAGGGAACGGCCTGAG-3’; and Reverse- 5’-
CTTCCTGGAGGTCACGCT CAAGG-3’. 
 
Table 2. Demographics of all Chinese subjects combined*  
 

 Median 
±st.dev. 

(min, max) N (total = 10) 

Age 33 ± 7.57 (20, 44) 10 
Clean time (months) 16 ± 7.91 (1, 24)  10 

Race = Chinese   10 
Sex = Male   10 
Primary Substance =  Heroin only  10 
Primary Substance =  Heroin  + 
other 

 0 

*One sample was eliminated because of low amplification so that 
genotyping was not possible.  
 
 
The dopamine D4 receptor (DRD4), which maps to 11p15.5, contains a 
48 bp VNTR polymorphism in the third exon [68], which consists of 2-11 
repeats. The assay [67] is a modification of the method of Lerman, et al. 
(1998) [69]. Primer sequences were: Forward- 5’-VIC -GCT CAT GCT 
GCT GCT CTA CTG GGC-3’; and Reverse-5’-CTG CGG GTC TGC 
GGT GGA GTC TGG-3’. 
 
Monoamine Oxidase A upstream VNTR (MAOA-uVNTR): The MAOA 
gene, which maps to Xp11.3-11.4, contains a 30 bp VNTR in the 5’ 
regulatory region of the gene which has been shown to affect expression 
[70]. A genotype by environment interaction has been reported for this 
polymorphism [71]. The MAOA-u VNTR assay is a modification [72] of a 
published method [70]. Primer sequences were:  Forward- 5’-
ACAGCCTGACCG-TGGAGAAG-3’; and Reverse- 5’-
GAACGTGACGCTCCATTCGGA-3’. 
 
Serotonin Transporter-Linked Polymorphic region (5HTTLPR): The 
serotonin transporter (5HTT, Locus Symbol SLC6A4), which maps to 
17q11.1-17q12, contains a 43 bp insertion/deletion (ins/del) 
polymorphism in the 5’ regulatory region of the gene [73]. Due to an error 
in sequencing this was originally thought to be a 44 bp deletion. The long 
variant (L) has approximately three times the basal activity of the short 
promoter (S) with the deletion [74]. Primer sequences were: Forward- 5’- 
6FAM - ATG CCA GCA CCT AAC CCC TAA TGT - 3’; Reverse- 5’- GGA 
CCG CAA GGT GGG CGG GA - 3’. 
 
Hu et al. (2005) [75] reported that a SNP (rs25531, A/G) in the Long form 
of 5HTTLPR may have functional significance: The more common LA 

allele is associated with the reported higher basal activity, whereas the 
less common LG allele has transcriptional activity no greater than the S. 
The SNP rs25531 is assayed by incubating the full length PCR product 
with the restriction endonuclease MspI. 
 
For all of the above VNTR and ins/del polymorphisms, PCR reactions 
contained approximately 20 ng of DNA, 10% DMSO, 1.8 mM MgCl2, 200 
µM deoxynucleotides, with 7’-deaza-2’-deoxyGTP substituted for one 
half of the dGTP, 400 nM forward and reverse primers and 1 unit of 
AmpliTaq Gold® polymerase, in a total volume of 20 µl. Amplification 
was performed using touchdown PCR [76]. After amplification, an aliquot 
of PCR product was combined with loading buffer containing size 
standard (Genescan 1200 Liz) and analyzed with an ABI PRISM® 3130 
Genetic Analyzer. Genotypes were scored by two investigators 
independently.   
 
DRD2 TaqIA (rs1800497): The gene encoding the dopamine D2 
receptor maps to 11q23, and contains a polymorphic TaqI restriction 
endonuclease site located within exon of the adjacent ANKKI gene which 
was originally thought tb located  in the 3' untranslated region of the 
gene.  The A1 allele has been reported to reduce the amount of receptor 
protein [77]. This SNP is done using a Taqman (5’Nuclease) assay [78]. 
Primer and probe sequences were: Forward primer- 5’-
GTGCAGCTCACTCCATCCT-3’; Reverse primer- 5’-
GCAACACAGCCATCCTCAAAG-3’; A1 Probe- 5’- VIC-
CCTGCCTTGACCAGC-NFQMGB-3’; A2 Probe- 5’- FAM-
CTGCCTCGACCAGC-NFQMGB-3’. 
 
COMT val158met SNP (rs4680):  The gene encoding Catechol-O-
methyltransferase (COMT) maps to 22q11.21, and codes for both the 
membrane-bound and soluble forms [79] of the enzyme that metabolizes 
dopamine to 3-methoxy-4-hydroxyphenylethylamine [80]. An A→G 
mutation results in a valine to methionine substitution at codons 158/108, 
respectively.   This amino acid substitution has been associated with a 
four-fold reduction in enzymatic activity [80].  The COMT SNP is assayed 
with a Taqman [78] method. Primer and probe sequences were: Forward 
Primer- 5’-TCGAGATCAACCCCGACTGT-3’; Reverse Primer- 5’-
AACGGG-TCAGGCATGCA-3’; Val Probe- 5’-FAM-
CCTTGTCCTTCACGCCAGCGA- NFQMGB-3’; Met Probe- 5’-VIC-
ACCTTGTCCTTCATGCCAGCGAAAT- NFQMGB-3’. 
 
Details, including primer sequences and specific PCR conditions may be 
found in Anchordoquy et al. [67], Haberstick and Smolen [78] and 
Haberstick et al. [72]. 
 
 
2.3 Addiction Risk Score 
 
In terms of genotyping data we have determined based on literature 
review that there are seven risk alleles involved in the six candidate 
genes studied in this patient population. To determine severity of the 25 
patients studied (one Chinese subject was eliminated from the analysis 
due to poor PCR amplification) we calculated the percentage of 
prevalence of the risk alleles and provided a severity score based on 
percentage of risk alleles present. Subjects that carry the following 
alleles: DRD2=A1; SLC6A3 (DAT) =10R; DRD4=3R or 7R; 5HTTlRP = L 
or LA; MAO= 3R; and COMT=G. As depicted in Table- 2 Low Severity 
(LS) = 1-36%; Moderate Severity (MS) =37-50%, and High Severity (HS) 
= 51-100%. 

 
[III] RESULTS 

 
The resultant genotyping is illustrated in Table-3 of this report 
and represents a total of 16 patients (group1) identified as not 
only addicts but the type of drug of choice. 
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Table: 3. Group 1 Resultant genotyping data for each Caucasian patient.  
 

Subject # MAOA 
uVNTR 

5HTTLPR 5HTTLPR SLC6A3 DRD4 DRD2 COMT Any risk allele SEVERITY* 
ARS 

1 3R S/L S/LG 9R/10R 4R/4R A1/A2 G/G POSITIVE 0.46–MS 
2 3R S/L S/LA 10R/10R 4R/7R A2/A2 G/G POSITIVE 0.62 –HS 
3 3R L/L LA /LG 9R/9R 3R/4R A1/A2 A/G POSITIVE 0.57-HS 
4 4R S/L S/LA 10R/10R 3R/7R A2/A2 G/G POSITIVE 0.46-MS 
5 4R L/L LA/LA 10R/10R 4R/7R A2/A2 A/G POSITIVE 0.62 –HS 
6 3R S/S S/S 9R/10R 4R/7R A2/A2 A/G POSITIVE 0.30 –LS 
7 4R S/L S/LG 10R/10R 4R/4R A1/A1 A/A POSITIVE 0.38 –MS 
8 4R S/L S/LA 9R/10R 3R/4R A2/A2 A/A POSITIVE 0.23-LS 
9 3R L/L LA//LA 9R/9R 4R/7R A2/A2 A/G POSITIVE 0.54-HS 
10 4R L/L LA/LA 9R/10R 4R/4R A2/A2 G/G POSITIVE 0.54 –HS 
11 3R S/L S/ LA 9R/10R 4R/4R A1/A2 G/G POSITIVE 0.54-HS 
12 4R L/L LA/LA 9R/10R 4R/4R A1/A2 A/G POSITIVE 0.54-HS 
13 4R S/L S/ LA 10R/10R 4R/4R A1/A2 A/G POSITIVE 0.46 –MS 
14 4R S/S S/S 9R/10R 4R/4R A1/A2 G/G POSITIVE 0.30-LS 
15 3R L/L LA / LA 10R/10R 4R/4R A1/A2 A/G POSITIVE 0.69 –HS 
16 4R S/L S/LA 10R/10R 4R/7R A1/A2 A/A POSITIVE 0.46-MS 

 
Severity percentage:  LS =19; MS=31; HS= 50 
Average GARS score:  LS= 0.28; MS=0 .44; HS =0 .58 
Prevalence of DRD2 A1 allele = 56% 
Percentage of Moderate and High Severity= 81 
 
In terms of genotyping data we have determined based on 
literature review that there are seven risk alleles involved in the 
six candidate genes studies in this patient population. To 
determine severity of the 16 patients studied we calculated the 
percentage of prevalence of the risk alleles and provided a 
severity score based on percentage of risk alleles present. 
Subjects that carry the following alleles: DRD2=A1; SLC6A3 
(DAT)=10R; DRD4=3R or 7R; 5HTTlRP = L or LA; MAO= 3R; 
and COMT=G. As depicted in Table-2 low severity (LS) = 1-
36%; Moderate Severity MS) =37-50%, and High Severity (HS) 

= 51-100%. Based on this model 16 subjects tested have at least 
one risk allele or 100%. Out of the 16 subjects we found   50% 
(8) HS; 31% (5) MS; and 19% LS (3 subjects). These scores are 
then converted to a fraction and then represented as an GARS 
whereby we found the average GARS to be: 0.28 Low Severity; 
0.44. moderate severity and 0.58 high severity respectively.  
Therefore, using GARS we found that 81% of the patients were 
at moderate to high risk for addictive behavior. Of particular 
interest we found that 56% of the subjects carried the DRD2 A1 
allele (9/16) [Table-3]. 

 
Table 4.  Group 2 Resultant genotyping data for each Chinese patient.  
 

Subject 
# 

MAOA 
uVNTR 

5HTTLPR 5HTTLPR SLC6A3 DRD4 DRD2 COMT Any risk allele  SEVERITY* 
ARS 

1 4R S/L S/LA 10R/10R 4R/4R A2/A2 A/A POSITIVE 0.30–LS 
2 3R S/S S/S 10R/10R 2R/4R A1/A2 GAG POSITIVE 0.38–MS 
3 4R S/S S/S 10R/10R 3R/4R A1/A2 G/G POSITIVE 0.46-MS 
4 3R S/S S/S 10R/10R 4R/6R A2/A2 G/G POSITIVE 0.38-MS 
5 4R S/S S/S 10R/10R 4R/4R A1/A2 A/G POSITIVE 0.30–LS 
6 3R L/L S/ LG 10R/10R 4R/4R A1/A2 ND POSITIVE 0.45 –MS 
7 4R L/L LA/LG 10R/10R 4R/4R A1/A2 A/G POSITIVE 0.54 –HS 
8 4R S/S S/S 10R/10R 4R/5R A2/A2 A/G POSITIVE 0.23-LS 
9 3R S/L S/LA 10R/10R 2R/4R A2/A2 A/G POSITIVE 0.46-MS 

 
Severity percentage: LS =33; MS=56; HS= 11 
Average GARS score: LS= 0.28; MS=0 .43; HS =0 .54 
Prevalence of DRD2 A1 allele = 56% 
Percentage of Moderate and High Severity= 67 
 
Moreover, data obtained from an on-going fMRI study in China 
(YL and JT) in nine heroin addicted males [see demographic 
Table-2] show similar genotype data [Table-4]. Based on this 

model 9 subjects tested (Group 2) have at least one risk allele or 
100%. Out of the 9 subjects we found   11% (1) HS; 56% (5) 
MS; and 33% LS (3 subjects). These scores are then converted 
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to a fraction and then represented as an GARS whereby we 
found the average GARS to be: 0.28 Low Severity; 0.43 
moderate severity and 0.054 high severity respectively. 
Therefore, using GARS we found that 67% of the patients were 
at moderate to high risk for addictive behavior. Of particular 
interest we found that 56% of the subjects carried the DRD2 A1 
allele (5/9) [Table-4]. Statistical analysis revealed that the 
groups did not differ in terms of overall severity (67 vs. 81%) in 
these two distinct populations. Using the z-test of proportions, 
the resulting z=0.79 with p=0.432.  However a sample size of 
228 for Group 1 and 128 for Group 2 to detect a significant 
difference between two populations with 81% and 67% risk by 
z-test at the 0.05 level with power of 80%. 
 
Nevertheless, combining these two independent study 
populations (Group 1 and Group2) reveal that subjects entering 
a residential treatment facility for poly-drug abuse carry at least 
one risk allele (100%). We found that 74% of this combined 25 
subjects (Caucasian and Chinese) had a moderate to high 
GARS. 
 
[IV] DISCUSSION 
 
While this exploratory study did not carry out any specific 
statistical analysis such as Baysian Theorem, Structural 
Equation Modeling or Recursive Partitioning (PR) the subject of 
work in progress the study was still informative.  In terms of 
genotyping data we have determined that when multiple 
candidate genes are analyzed such as serotonergic- 2A receptor 
(5-HTT2a); serotonergic transportor (5HTTLPR);  (dopamine 
D2 receptor (DRD2), Dopamine D4 receptor (DRD4); 
Dopamine transporter (DAT1); Catechol-o-methyl –transferase 
(COMT),  and monoamine –oxidase (MOA) genes we found 
that 100% of all subjects carried at least one risk allele. 
Moreover this is the first time that anyone attempted to stratify 
or classify addiction risk by incorporating an algorithm 
formulation of combining a number of risk alleles by pre-
assigning an allele as an risk allele having predictive value for 
drug use. For example it has been published earlier that the 
DRD2 A1 allele had a predictive value for all Reward 
Deficiency Syndrome (RDS) behaviors using Baysian statistics 
to  have a high predictive value of  74.4%. [3] and reviewed by 
Bowirrat et al. [81]. It is of further interest that the subjects 
studied in this investigation had multiple drug abuse relapses 
and presented to in-patient residential treatment programs. Our 
preliminary finding of approximately 75% of these individuals 
having  moderate  to high GARS whereby only 25% had low  
GARS suggest a potential utility for pre-screening patients  
prior to a one-size fits all treatment plan. Clinically this may 
have real importance in understanding expectations of future 
success and the need for intensive treatment involving genomic 
solutions coupled with bio-holistic medical therapies [82].  
 
The present exploratory study supported the hypothesis 
suggested earlier by us and others [60, 83] by identifying 
hypodopaminergic genotypes as the best predictor of drug abuse 

behavior in an adult and even more so in an adolescent 
population.  This work is in agreement with Melis et al. [11] 
that identified a hypodopaminergic state as a causal mechanism 
in the development of SUD. This is consistent with a number of 
functioning Magnetic Resonance Imaging (fMRI) studies 
showing the importance of DRD2 levels by genotyping 
indicating that hypodopaminergic A1 genotype  leads to blunted 
response  and as such could lead to aberrant  drug  and or food 
seeking behavior [84, 85] while hyperdopaminergic  A2 
genotype serves as a protective factor against the development 
of drug disorders [86]. 
 
A further strength of this study is that we only used male 
subjects. de Courten –Myers  et al. [87] have pointed out that 
one of the difficulties in replicating single gene associations 
with drug use disorder is sex –based or gender differences in 
neuro -chemistry and neuroanatomy. Moreover, Conner .et al. 
[60] suggested that males with hypodopaminergic functioning 
are more likely to abuse drugs that stimulate the 
mesocorticallmbic system than those with normal dopaminergic 
functioning.  In contrast, females living in a negative 
environment are at increased risk (possibly not due to their 
genotypes) for using more drugs and even more types of drug 
which increase their risk for SUD.   
 
 Another strength of this exploratory study is that it is in 
agreement with the work of Conner et al.  [60] confirming the 
importance of  the cumulative effect of multiple genotypes 
coding for hypodopaminergic functioning, regardless of their 
genomic location, as  a predictive method  of drug use in males.  
Moreover, it extends the current literature, by suggesting for the 
first time a simple method using genetic testing to classify risk 
behavior in male patients seeking in-patient residential 
treatment. 
 
The limitations of this study must be considered before 
interpreting the findings. This was only an exploratory study 
and as such a small sample size was utilized to obtain very 
preliminary data.  This study showing positive association of a 
number of hypodopaminergic gene polymorphisms  with drug 
abusing adults requires replication in a much larger population  
in both in-patient and out-patient facilities.  The confirmatory 
studies must include both males and females.  The studies 
should extend the population base to specific drugs of choice, 
ethnic groups, age and other risk taking behaviors. Certainly the 
frequency of drug seeking behavior must also be considered in 
future experiments. Using a SUD scale [88] may also improve 
the generality of these findings. Most importantly many more 
candidate genes should be included in the GARS panel. Blum et 
al. [89] has reported on a so called “Happiness Gene Map which 
includes a total of 30 genes. These genes influence how reward 
is interpreted in the brain .Another impotent caveat is that the 
expression of these gene polymorphisms may be significantly 
impacted by epigenetic effects due to environmental elements.   
 
While it is understood that  future work will analyze  the best 
predictive candidate genes  to secure a predictive GARS panel 
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of genes utilizing a number of statistical tools  such as recursive 
partitioning  and  Baysian  predictive modeling techniques  the 
need  for such a genetic  test in the  Chemical  Dependence field 
seem parsimonious. A major limitation herein is that larger 
sample size and the definitive association of these risk alleles 
with validated severity scales (i.e. treatment response, failures 
and number of years addicted) are warranted.  There are at least 
three practical reasons for such a diagnostic test: 1) identifying 
those at risk prior to the onset of SUD providing early 
intervention and prevention of the negative outcomes from such 
use: 2) removal of denial and guilt and 3) genotype results could 
suggest different at risk individuals and programs could be 
tailored to a patients risk profile.   

 
It is important to note that the severity of risk in the Caucasian 
seemed to be somewhat different when we only look at the 
percentage of high GARS.  Specifically, 50% of the 
psychostimulant drug of choice dependent individuals 
(Caucasian) had a high GARS whereas only 11% of the Heroin 
addicted males (Chinese) had a high GARS. We do not have a 
reasonable explanation for this difference.  However when both 
moderate and High GARS are combined for both groups we 
find that a total of 74% of these poly-drug abusers have a 
moderate to high GARS.  

  

Fig: 2. Genetic Addiction Risk Score (GARS) Analysis: Exploratory Development of polymorphic risk alleles among 16 addicted 
patients. The figure does not display the results obtained for the Chinese samples. 
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[V] CONCLUSION  
 
The need to genetically test individuals especially at entry into 
a residential or even non-residential chemical dependency 
program has been suggested   by scientists and clinicians alike 
here and abroad.  In fact the most recent work of Conner et al.  
[60] has suggested the importance of multiple  
hypodopaminergic gene polymorphisms as a possible 
predictive tool  to identify children at risk for problematic drug 
use prior to the onset of drug dependence.  Our current 
exploratory study of only 16 Caucasians [as summarized in 
Figure-2] is in agreement with this prediction in terms of the 
development of a novel genetic test using an algorithm to 
determine the proposed GARS. To reiterate we found a high 
percentage (75%) of subjects carry a moderate to high GARS 
whereby 100% of individuals tested posses at least one risk 
allele tested. It is of some interest that in the Chinese 
population Group 2 only we found rare DRD4 alleles in this 
population such as 2R, 5R and 6R. 
 
We are proposing, it is possible that the hypodopaminergic 
state is due to gene polymorphisms as well as environmental 
elements including both stress and neurotoxicity from aberrant 
abuse of psychoactive drugs (i.e .alcohol, heroin, cocaine etc). 
Genetic variables could include serotonergic genes 
(serotonergic receptors [5HT2a]; serotonin transporter 
5HTlPR); endorphinergic genes (mu OPRM1 gene; 
proenkephalin (PENK) [PENK polymorphic 3' UTR 
dinucleotide (CA) repeats}; GABergic gene (GABRB3) and 
dopaminergic genes (ANKKI Taq A; DRD2 C957T, DRD4 
7R, COMT Val/met substation, MAO-A uVNTR, and SLC3 9 
or 10R). Any of these genetic and or environmental 
impairments could result in reduced release of dopamine and 
or reduced number of dopaminergic receptors.  
 
We are proposing that following needed confirmation positive 
outcome of GARS will have prevention and treatment benefits 
in those probands afflicted with genetic antecedents to RDS 
seeking behaviors.  
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RESOURSE LINKS 
 
The following Web site links are suggested for additional information: 
http:// www.addictionseearch.com; http://www.drugstrategies.org and 
http://www.rdsyndrome.com 
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ABSTRACT 
Omics has massively permeated translational clinical research with numerous diseases being 
covered by Omics studies from the genome to the metabolome level. Integrating these disease 
specific Omics tracks appears a logical next step for building the fundament of Systems Biology and 
Systems Medicine. Here, coherence of individual Omics tracks regarding clinical hypothesis, 
samples and clinical descriptors, and finally data handling and integration become pivotal. We 
present a data integration, annotation and relations modeling concept for heterogeneous Omics data 
and workflows. With molecular features at the center of all Omics we link the result profiles from 
different Omics tracks characterizing a specific disease phenotype to a common human molecular 
reference network for allowing a seamless integration and subsequent support in interpretation of 
Omics screening results.  
Our concept rests on data structures for representing objects specified by metadata and content. 
For handling diverse Omics tracks a flexible structure for content is proposed allowing data 
representation at different levels of granularity as demanded by the type of Omics and specific type 
of data. Content on the molecular level includes deep annotation of molecular features on gene and 
protein level. Based on this annotation pair-wise relations between molecular objects are, traversing 
the molecular annotation into a network of relations (molecular feature graph). Such a relation 
network is also built on the Omics data level, combining explicit relations derived from study setup 
and implicit relations generated by mining metadata and content (Omics data graph).  
Finally both graphs are merged utilizing the molecular feature level as common denominator, 
enabling a persistent integration and subsequently interpretation of Omics profiling results in the 
realm of a given clinical hypothesis. We present a case study on integrating transcriptomics and 
proteomics data on chronic kidney disease for demonstrating the feasibility of this concept. 

. 
_____________________________________________________ 

 
Keywords: integration; networks; standards; omics; graphs  
 
 
 
[I] INTRODUCTION  
 
With sequencing of the human genome a major cataloguing 
milestone was reached in 2001 [1], followed by rapid 
development of Omics tracks spanning from the genome to the 
metabolome level. A summary statistics on the various Omes 
is provided at the Gerstein lab 
(http://bioinfo.mbb.yale.edu/what-is-it/omes/omes.html), 
clearly indicating the maturity of genomics efforts when 
compared to the other Omes. Omics has in the meantime 
entered clinical sciences aimed at elucidating the 
pathophysiology of diseases, thereby providing the basis for 
identifying biomarkers serving for novel diagnostics and 

therapy [2,3]. Specific profiling has already been forwarded to 
clinical application, e.g. for assessing breast cancer utilizing a 
profile of about 70 features [4]. Numerous prevalent diseases 
have been studied on the various Omics levels, and first efforts 
were introduced for consolidating this body of knowledge in 
open access data repositories. Usually these repositories are 
Omics-specific as e.g. ArrayExpress for transcriptomics [5] or 
PRIDE for proteomics data [6], or Omics profiles are 
consolidated on the level of genes (gene-centric) as in 
Genecards (http://www.genecards.org) [7]. For some etiologies 
also disease-specific databases have been established, with 
Oncomine as an example for consolidating cancer 
transcriptomics data [8]. Platforms integrating various Omics 
levels, however, are less common, although being perfectly in 
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line with approaches in Systems Biology [9], in the meantime 
already expanding at least conceptually towards Systems 
Medicine [10]. Aim of these concepts is broad integration of 
Omics tracks being embedded in clinical data space and 
sample descriptors, with the ultimate goal of providing a 
quantitative representation of disease (outcome)- specific 
molecular processes. 
 
Distinct specifications have to be met in Omics in particular 
including: i) a quantitative assessment of molecular objects, 
and ii) approaching the totality of objects at some layer of 
cellular organization. Advancements in miniaturization, 
improved readout technologies, and parallelization of 
established technologies have significantly contributed to the 
accuracy of quantitative measurement procedures. However, 
major shortcomings remain with cataloguing efforts for 
determining the totality of some sort. Here, genomics may 
come closest to completeness, presently experiencing a further 
boost resting on next generation sequencing technologies at 
least in principal allowing an unbiased decoding of entire 
genomes [11]. However, for all other Omes limitations have to 
be recognized, and even the notion of a “gene” came under 
some scrutiny, [12] particularly when evaluating results of the 
ENCODE consortium [13]. Gene expression array data in most 
cases still focus on protein coding genes, may include some 
resolution on the level of splice variants, but only in rare cases 
expand to assessing miRNAs or more generally ncRNAs. The 
totality of the proteome (and to some extent also of the 
metabolome) is under question on a theoretical level, but is 
rapidly evolving due to parallelized high resolution separation, 
identification, as well as quantification. 
 
For integrative Omics, and here in particular in the medical 
context, numerous additional factors have to be taken into 
consideration, centrally including sample specifications [14]. 
A detailed clinical hypothesis comes in the first place, and 
from there delineation of strict sample inclusion and exclusion 
criteria result. Case-control studies are the typical setup in 
screening, where ideally cases and controls are matched for all 
parameters with known or suspected impact but the clinical 
question of interest (outcome). Here either a dedicated 
prospective sample and data collection has to be established, or 
a retrospective collection is available. Best sources in the latter 
case include interventional studies performed under strict 
quality control. In line with sample specification is assessment 
of sample size for assuring a well powered study from the 
statistical perspective for each individual Omics track 
considered [15]. Omics procedures are applicable for various 
sample types, most frequently utilizing tissue, blood and urine. 
Here standardized sample handling and preparation comes into 
play, where standard operating procedures (SOPs) for storage 
and preparation have been derived for a number of Omics 
tracks [16]. 

 
In the light of the aforesaid the following issues may be 
considered as central for integrating heterogeneous Omics 
profiling results: 
 
1. Thorough definition of the clinical hypothesis 

2. Detailed specification of cases and controls for each 
Omics track 

3. Sample size calculations for each specific Omics track 
4. SOPs for sample and clinical data handling 
5. SOPs for Omics procedures and data generation 
6. Standardized reporting covering each Omics workflow 
 
Regarding reporting conventions numerous initiatives have 
been started, including experiment description as well as 
execution standards [17], and both are to some extend already 
followed in results reporting, with MIAME being a well 
known implementation for transcriptomics [18]. 
 
If different Omics tracks follow defined standards in reporting 
and are in line with a given clinical hypothesis Omics 
integration on the level of result profiles becomes feasible. For 
setting up a cross-Omics results integration two approaches 
may be followed for data preparation: Public domain driven by 
consolidating available information on a given clinical 
hypothesis (e.g. by extracting available profiles on a specific 
disease from ArrayExpress of PRIDE), or implementation of a 
dedicated cross-Omics project explicitly focusing on the 
specific clinical question. The latter approach may even 
expand towards using samples from the very same patients for 
conducting the individual Omics tracks, certainly adding to 
data coherence. Prototypical settings of such initiatives include 
the research consortia predict-IV focusing on toxicological 
aspects (http://www.predict-iv.toxi.uni-wuerzburg.de), or 
SysKid (http://www.syskid.eu) analyzing chronic kidney 
disease by a Systems Biology approach. 
 
Fulfillment of the technological and procedural requirements 
discussed so far enable consolidation of heterogeneous Omics 
feature profiles in a Systems Biology (Medicine) context. The 
next step in implementing such an approach is providing data 
management and integration which serves as basis for 
subsequent analysis, ultimately yielding molecular processes, 
biomarkers and target candidates linked to the specific disease 
and outcome. At this step the incomplete molecular 
cataloguing aspect comes in, adding annotation as a major 
aspect to Omics data management and integration.  
We in the following propose a data consolidation and 
annotation framework specifically aimed at covering 
integration of diverse Omics result profiles directly linked to a 
human molecular reference network. We in particular present 
concepts for explicit as well as implicit relations inference 
aimed at supporting data interpretation in the realm of a given 
clinical hypothesis. 
 
 
[II] MATERIALS AND METHODS 
 

2.1. Object abstraction 
 
The generic component of our concept is an object, resembling a data 
structure holding a unique identifier. Practical notion of an object is kept 
broad, involving molecular objects and Omics data objects. Omics data 
objects, in the following referred to as “records”, involve any type of 
machine readable data relevant for or generated in the course of 
experimental procedures. Typical records include raw data matrices, 
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analysis results (being the core of our integration concept), validation 
results, or sample specifications. Molecular objects on the other hand 
are defined as known and well annotated genes or proteins (but 
conceptually may be expanded for also including RNA, metabolites, 
etc.). For each object metadata are provided allowing further 
characterization of the object category. Next, the effective content of an 
object is given. Molecular content involves annotation data e.g. 
specifying a gene’s functional terms or protein interaction data. Omics 
record content is in a first place characterized by the level of 
granularity, where content of an individual record may involve large 
profiling matrices covering an entire Omics screening experiment, may 
resemble results profiles from case-control studies, or may provide 
individual molecular features and their specific expression value found 
in a particular experiment. A third major element is relations which put 
objects (and their content) into context. Relations again follow the data 
structure concept, where next to a unique identifier metadata are 
provided. Relation specific metadata mainly include a specification of 
the type and further edge content as directionality, source (explicitly 
built or implicitly computed), or evidence level. 
 

 
2.2. Technical implementation 
 
The Java Enterprise Platform (http://java.sun.com/javaee), utilizing a 
post-relational approach as data foundation, provides an efficient 
platform for implementing object oriented concepts as discussed here. 
This platform supports dynamic data models technically enabled via the 
Content Repository for Java (JCR), complemented by Glassfish as 
application server. On the server side the Enterprise Java Bean 
component architecture seamlessly supports an architectural design for 
separating application logic and presentation logic. Apache Jackrabbit 
as a reference implementation of JCR provides further functionality 
including versioning and full text search. Java Server Faces may be 
used for implementing the client side. 
 
 
2.3. Public domain sources 
 
Software platforms, modules, as well as molecular content necessary 
for realizing the technical backbone of the concept presented in this 
work are available in the public domain. The JCR reference Apache 
Jackrabbit is found at http://jackrabbit.apache.org, Java Server Faces is 
found at http://java.sun.com/javaee/javaserverfaces. A manifold of 
modules for supporting data processing workflows is provided by 
Taverna (http://www.taverna.org.uk), with the Taverna engine also 
embedded in Java. Biomart, available at http://www.biomart.org, can be 
customized for supporting the data management side, and additionally 
a website can be configured for providing user interfaces. Biomart 
further allows interfacing via web services for handling large data sets. 
As objects are represented in their context visualization of resulting 
networks is essential for supporting interpretation. Gehlenborg et al. [9] 
recently provided a review on Omics visualization tools, with Cytoscape 
(http://www.cytoscape.org) as a prominent example. Cytoscape allows 
an extended definition and display of node (record) types, necessary 
for visualizing heterogeneous content spanning from clinical sample 
nodes to molecular feature nodes. Different types of molecular 
interaction networks are available for download, including procedural 
interactions from KEGG (http://www.genome.jp/kegg) and PANTHER 
(http://www.pantherdb.org), physical interactions (both experimentally 
determined as well as predicted) from the meta-database OPHID 
(http://ophid.utoronto.ca/ophidv2.201), or interaction networks 
consolidated from multiple sources as STRING (http://string.embl.de). 
For assuring coherence on the name space level for molecular 
reference networks as well as molecular features coming from the 
various Omics levels a reference namespace has to be selected and 

regularly updated. Source providing broad coverage of features are 
found with UNIPROT (http://www.uniprot.org) or NCBI 
(http://www.ncbi.nlm.nih.gov/refseq). 
 
 
[III] RESULTS 
 
3.1. Omics record consolidation 
 
The generic object for Omics data consolidation is a record 
representing data at any given level of detail, e.g. 
characterizing an entire transcriptomics profile or only a single 
feature and its associated expression value. For each record 
metadata may be provided for further characterization of the 
record content. Furthermore object relations can be built for 
introducing dependencies between records. [Figure-1] 
provides an example scheme of the record (node) and relation 
(edge) concept. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig: 1. Node and edge concept for handling records of  
 
Omics workflows: (A) Schematic setup of an Omics track 

involving study plan, expression raw data and analysis results 

data. (B) Formal representation of the workflow as node and 

edge concept with each object encoded as a data structure 

holding a unique identifier and a parameter list (C) 

Representation of the concept in UML (Unified Modeling 

Language, http://www.uml.org). 
 
Omics procedures follow a generic process as exemplified in 
Figure 1A. First a study plan is specified defining the case-
control setup reflecting the clinical hypothesis, methodology 
used, etc. Based on the definition of cases and controls 
samples are linked which effectively undergo screening as 
specified in the study plan. Equivalent to study plans samples 
are represented as records (holding sample source, type, 
amount available, etc. as metadata and content). Frequently 
samples are organized in dedicated databases and may only be 
linked into an Omics record management via unique sample 
identifiers. When retrieving Omics profiles from the public 
domain the level of detail regarding sample-specific clinical 
data is frequently sparse and typically limited to clinical 
categories/stages for the disease. 
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Executing experimental profiling results in an expression 
record (e.g. raw data matrix of case and control samples), 
which after statistical analysis leads to a results record only 
listing significantly differentially regulated features when 
comparing case and control group. Typically such a results 
profile is based on a per-feature statistical test including 
correction for multiple testing. Although substantial 
differences in experimental procedures are evident this basic 
workflow is followed by most Omics tracks assessing 
continuous concentration values (a fact also becoming evident 
when comparing MIAME and MIAPE for transcriptomics and 
proteomics, respectively). 
 
On an abstract level (Figure 1B) a graph representation 
becomes feasible, holding nodes characterized by record 
identifiers (RID) and edges specified by edge identifiers (EID, 
in the example case being directed). Each node and each edge 
is accompanied by a data structure holding a unique identifier. 
In the case of nodes metadata and the content as such are 
stored in the data structure, for edges the node identifiers 
specifying the connectivity via node IDs as well as metadata 
(directionality, type of edge, etc.) are provided. For nodes 
individual content may be represented at arbitrary levels of 
granularity (spanning from whole profile matrices to single 
features) depending on subsequent resolution needs in 
analysis. However, resolution on the level of individual 
features is mandatory in virtually all analysis procedures. For 
practicability issues encapsulation of entire profiles, arrays of 
profiles, or analysis result vectors appears preferable. This 
approach significantly reduces complexity on the record level 
and eases upload and management, but still provides access to 
individual features when using record templates (where e.g. 
feature and associated expression value reside in defined 
content locations). 

 
Omics integration naturally demands a combination of 
profiling efforts, exemplarily shown in [Figure-2]. The 
situation given in Figure 2A is defined by individual study 
plans I-III, respective screening profiles (e.g. raw data) and 
results (list of significantly different features on the 
transcriptome, proteome and metabolome level). Multiple 
result files may be generated (see also the UML in Figure 1C) 
e.g. by varying statistical procedures used for analyzing a 
given case-control group, or by varying the assignment of 
samples as case and control.  
In an ideal setting the studies are fed from a single sample / 
clinical descriptor repository (feasible for explicitly designed 
cross-Omics), or have to be extracted to the extent possible if 
fed from public domain Omics profiling (e.g. gathering 
available Omics studies regarding a specific clinical 
hypothesis). Naturally, a dedicated study will provide a more 
complete and coherent set of records, as these reflect explicitly 
defined inclusion criteria focusing on a specific clinical 
hypothesis.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
Fig: 2. Node and edge concept for cross-Omics: (A) 

Schematic setup of three individual Omics tracks fed by two 

sample sources. (B) Formal representation of the Omics tracks 

given in (A) further including two implicit relations (EID_1, 

EID_2). 
 
Certainly, record types are not limited to the examples given in 
Figure 1 and 2. Further record types of value include scientific 
references, standard operating procedures, or experimental 
validation data (including both, profile validation as well as 
complementary data e.g. coming from in-vitro and in-vivo 
models of the clinical setting), among others. 
 
[Figure-3] provides an implementation example for organizing 
the corresponding record management. This reference 
implementation organizes records along specific Omics tracks 
(Figure 3A), and essential records specifying the study 
specifications and results (Figure 3B). For each record 
metadata as well as explicit links between records (in the 
example linking transcriptomics raw data and analysis data, 
Figure 3C) can be specified. All relations specified in Figure 
1A and 2A are explicit, as such defined by the user depositing 
the records, and reflect the logical structure of Omics 
procedures. Of central relevance here is that the Omics tracks 
are driven as independent processes, in a first place only 
(explicitly) linked if using joint samples (and more generic by 
focusing on one specific clinical hypothesis). 
 
However, further implicit relations are present in the collection 
of records (Figure 2B). One set of relations may be derived 
from joint metadata (EID_1) used for characterizing records 
(e.g. using the same tissue type), and a second set of relations 
may be derived from the record content as such (EID_2): 
Software frameworks as Jackrabbit provide full indexing of 
records for text search, and by this mechanism records can be 
linked e.g. based on “overall similarity”, or specifically by e.g. 
invoking on joint molecular identifiers in feature lists. 
Relevant examples include shared gene or protein identifiers 
for extracting relations e.g. between transcriptomics and 
proteomics profiles. 
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Fig: 3. Example layout for cross-Omics record 
management: (A) Repository structure involving three Omics 

tracks and a clinical sample repository. (B) Records assigned to 

a specific Omics track (see Figure 1A). (C) Example metadata 

categories for a transcriptomics raw data record including an 

explicit relation between transcriptomics raw data and analysis 

data. 
 
Annotation of relations certainly goes far beyond the examples 
provided here, as numerous project specific term lists may be 
used. Relevant examples include relations mapping based on 
disease-feature or feature-drug associations: A results file 
record may be mined for occurrence of gene or protein 
identifiers with known links to diseases (e.g. utilizing OMIM 
data, http://www.ncbi.nlm.nih.gov/omim), and if identified the 
diseases can be added as metadata to the record. In a next step 
relations between records can be built based on co-occurrence 
of disease associations. A comparable procedure may be 
relevant for known drug-target associations as e.g. provided by 
STITCH [19]. Yet another relevant procedure is to link 
scientific publications to records via publication-feature 
information e.g. mined from MEDLINE [20]. 

 
  
3.2. Omics feature consolidation 
 
Equivalent to the graph concept for representing Omics 
workflows also molecular features can be consolidated. In a 
standard Omics setup a feature denotes a relevant object (gene, 
transcript, protein, etc.) separating cases and controls utilizing 
a statistical measure. The typical representation of features 
including their relations is graphs, with protein-protein 
interaction networks (PPIs) as well known example [21]. PPIs 
are usually specific regarding the type of relation, e.g. IntAct 
networks encode physical (undirected) interactions [22], 
whereas KEGG represents procedural information also 
including edge directionality [23]. We derived the human 
proteome interaction network omicsNET which combines 
significant annotation with relations modeling. RefSeq 
(http://www.ncbi.nlm.nih.gov/refseq) is used as reference 
source for human genes and proteins providing about 25,000 
objects (considering a canonical sequence set of genes and 
proteins). For each gene/protein deep annotation was 
performed utilizing public domain sources, including tissue 
specific reference gene expression, various sources for 
functional annotation as Gene Ontologies, manifold protein 
interaction data sources and further protein characterization as 
subcellular location, among others. Additionally transcriptional 

control on the level of transcription factors and miRNAs was 
added.  
Technically, data structures were used, each holding a unique 
identifier linking to a gene/protein, and storing the annotation 
data as content. On the basis of the gene/protein-specific 
content a pair-wise relation score was computed which may be 
interpreted as dependency resting on the individual annotation 
given in the content. For further details on omicsNET we refer 
to [24]. A schematic layout of the construction principle is 
given in [Figure-4]. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig: 4. Concept of a molecular feature annotation graph: 
(A) Data structures specified by unique identifiers and extended 

annotation serve as basis for computing dependency weights. 

(B) Network representation holding molecular nodes and 

weighted edges, where weights are delineated from given 

annotation exemplarily shown for two edges (EID_3, EID_5) 

(individual contributions coming from: GEX: tissue specific gene 

expression; TF: joint transcription factor binding sites; INT: 

protein-protein interactions). 

 
Next to consolidated annotation the feature representation 
given in Figure 4 provides the opportunity for automated 
relations modeling. All content associated with molecular 
nodes is parameterized as input for an empirical metafunction f 
which allows computing pair-wise dependencies between 
molecular features. The metafunction integrates similarity 
measures as correlation coefficients for tissue specific gene 
expression profiles, as well as dependency measures as known 
protein interaction (e.g. coming from Intact or KEGG) for a 
given pair. The resulting parameter wx,y approximates an 
aggregate dependency between molecular features, and as this 
is done for all features a complete matrix and graph results. 
This graph can now be used for mapping analysis results 
coming from the various Omics tracks. 

 
 

3.3. Integrating records and features 
 
Obviously the representation of multiple Omics workflows, 
but also the system analyzed by Omics as such, namely an 
extended (although far from being complete) assessment of 
molecular entities may be represented as nodes (content) and 
edges (relations). 
On this basis an integration of both structures is an obvious 
next step, as schematically shown in [Figure-5]. 
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Fig: 5. Integrating Omics results data on a molecular 
feature graph: (A) Record data structures model (see also 

Figure 2B) and (B) feature data structure (see also Figure 4B) 

interlinked on a joint name space level (edge given in red). 

 
Omics operates on molecular name spaces, with gene and 
protein IDs as the most prevalent reference spaces. 
Decomposing all data into records with unique identifiers 
naturally supports building relations between the Omics record 
structure and the molecular feature structure. From this 
concept a persistent relations mapping for Omics results 
integration emerges, embedding sample space, experimental 
procedure logics, and molecular feature landscape. Features 
identified as relevant on the record level (stored in Omics 
result records) have a direct representation on the feature graph 
and vice versa. 
 
As for all relational models querying is naturally supported by 
the presented concept. However, yet another more powerful 
type of querying becomes feasible, namely subgraph 
extraction. An example subgraph is schematically depicted in 
[Figure-6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig: 6. Navigating in Omics record and molecular feature 
space: For a particular Omics track explicit relations are 

provided from sample records to study plan, further to raw data 

and results data. A specific feature of interest (geneID) given in 

results data shows an implicit link to a results record from a 

second Omics track, and on the molecular level equivalency 

with MID_III, which further shows strong dependency to MID_I 

(and may link to a result profile coming from a different Omics 

track). 

 

Merging the record and feature concepts traverses the 
traditional querying in relational databases into analysis of 
subgraphs. The example provided in Figure 6 uses a particular 
feature from an Omics analysis results file as start point. For 
this feature an implicit link to a second results file coming 
from a different Omics track is detected which allows tracking 
the path upstream this second track. 
At the same time downstream analysis into the molecular 
feature space becomes amenable. Here relations rest on 
computed dependencies based on broad feature annotation. For 
the example case a strong link to a second molecular feature 
may be followed which itself eventually may have become 
evident at some other level (e.g. an associated scientific 
publication) in a second Omics track. 
 
 
 
 
3.4. Example case 
 
We in the following exemplify the presented concept for 
Omics profiling of chronic kidney disease (CKD), a disease 
characterized by progressive loss of kidney function. CKD has 
been extensively studied on various Omics levels with an 
impressive consolidation effort on the transcriptomics level 
provided by the nephromine database 
(http://www.nephromine.org). Next to diabetic nephropathy 
(DN) and hypertensive nephrosclerosis other (mainly 
histopathological) classifications characterize the types of 
CKD, including IgA nephritis, focal segmental 
glomerulosclerosis, membraneous glomerulonephritis, and 
minimal change disease. For these types of CKD specific 
profiles on transcript and proteome level are available in the 
public domain, all derived on disease-type specific case-
control Omics profiling [25]. Utilizing the cross-Omics 
integration concept outlined above provides a graph shown in 
[Figure 7]. 
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Fig: 7. Integrated Omics for chronic kidney disease: 
Sample classification is provided by the histopathological 

representation of the disease (DN: diabetic nephropathy; IgA: 

IgA nephritis; FSG: focal segmental glomerulosclerosis; MG: 

membraneous glomerulosclerosis; MC: minimal change 

disease), each type entering proteomics, transcriptomics, or 

both. Strong arrows indicate paths linking sample type, Omics 

track, and molecular feature space (given by gene symbols).  

 

In this example Omics profiling is included for various types 
of CKD, with feature lists from proteomics characterizing all 
five representations when compared to matched (healthy) 
controls, and three conditions characterized by transcriptomics. 
Implicit linking of Omics result profiles shows APOA1 jointly 
identified by proteomics and transcriptomics when only 
considering the CKD type FSG. Analyzing APOA1 on the 
level of the protein interaction networks a path including the 
molecular identifiers FGA, VWF, COL16A1, THBS3 and 
COL4A4 and COL15A1 becomes evident (and all of these are 
identified as significantly differentially expressed by the 

transcriptomics track), where COL15A1 is additionally 
identified as significantly affected for all types of CKD on the 
basis of proteomics screening results. Consequently, also 
minimal change disease links into this network. Interesting to 
note here is that from a clinical perspective minimal change 
disease presents comparable to prolonged segmental 
glomerulosclerosis.  
 
This Omics results annotation may be further extended by 
including genetic studies on CKD [26] identifying uromodulin 
(UMOD) as affected. UMOD itself is found as differentially 
regulated by the transcriptomics studies, and shows on the 
molecular graph level a shortest path to APOA1 (via CRP and 
APOA2), but also to COL15A1 (via CRP, FN1, and 
COL5A1). 

 
 
 
 
 

 
 

 
[IV] DISCUSSION 
 
Omics procedures have reached a level of maturity enabling 
implementation in standard laboratories, and broad scale 
application is seen in translational and clinical research. 
Standards have been derived for most Omics tracks including 
both experimental design as well as execution, and 
reproducibility of Omics screening shows satisfactory results. 
However, integration of results from different Omics tracks 
and domains, but even of results coming from Omics studies 
focusing on the very same level of molecular organization 
experience shortcomings. We consider two main issues as 
relevant. The first is maintaining strict coherence on the 
experimental side in particular regarding sample inclusion and 
processing criteria. Specifically when addressing complex 
situations as human diseases a strict definition of the clinical 
hypothesis, associated clinical parameters, and outcome have 
to be closely shared for individual Omics tracks aimed for 
integration. For illustrating this issue the clinical presentation 
of “chronic kidney disease” [27] may be used, which as term 
includes various causative conditions and on the level of 
outcome may involve various parameters as levels of 
albuminuria, creatinine, or glomerular filtration rate. Omics 
integration for “chronic kidney disease” will certainly provide 
a far less coherent picture on the molecular level than using 
studies addressing specific type and specific stage of the 
disease. Omics procedures following such strict inclusion are 
certainly less frequently found in the public domain 
emphasizing the importance of dedicated Omics approaches. 
 
The second major issue is data handling concepts supporting 
Omics workflows on the entire level of annotation, spanning 
from the clinical data spectrum to the individual Omics 

profiles and relevant features resulting from the manifold of 
different analysis procedures. As mentioned above disease-
specific Omics repositories slowly emerge, also including to 
some extent metadata information as sample specifications on 
the clinical level. However, most of presently found disease 
specific repositories in the public domain are too broad in 
scope, hamper metadata at an adequate level of detail, and 
mostly include only a specific Omics domain (with 
transcriptome profiles as the most abundant type). 
 
 
We in this work present an Omics integration concept covering 
both, the data spectrum of Omics tracks as well as persistent 
mapping to molecular annotation. Data management concepts 
for Omics in a first place need a specification regarding 
granularity of data representation. Laboratory Information 
Management Systems (LIMS) have been designed for also 
covering Omics [28]. However, from the background of LIMS 
significant standardization of workflows is assumed which for 
individual Omics tracks appears manageable but for cross-
Omics is difficult to maintain (and for repositories built from 
public domain is merely impossible to achieve). For handling 
this issue we propose a record concept, formally represented as 
data structure managing content at arbitrary levels of 
granularity, where templates serve for standardizing 
experimental design and execution. This data encapsulation 
provides easy adaption to expanding scope (e.g. if yet another 
Omics track becomes available and needs integration), but also 
allows a representation of the entire Omics workflow including 
study plans, sample repositories, procedure documentation, 
raw data files, as well as analysis results and verification data. 
The proposed Omics annotation concept takes, next to data 
representation, care of another central aspect, namely relations 
modeling. Uniquely referenced objects allow explicit 



The IIOAB Journal 

  
©IIOAB-India   Vol. 1; Issue 2; 2010 

8  

definition of relation (as raw data file and associated analysis 
file(s)), and if implemented in a proper environment provides 
implicit relations modeling. The latter is of particular relevance 
on the level of cross-Omics data interpretation. 
The combination of Omics procedure annotation and relations 
modeling traverses the concept into a knowledge 
representation framework, formally represented as graph with 
content (nodes) in their context (edges). Such a design 
naturally enables integration with molecular graphs with 
genes/proteins being the predominant levels for data 
interpretation (where e.g. metabolites are mapped to involved 

enzymes, or SNP data to affected genes including their 
regulatory regions). Various molecular graphs resting on deep 
annotation have been derived with omicsNET [24] or STRING 
[29] as prototypical reference. Merging Omics graphs and 
molecular graphs enables extended querying utilizing 
methodologies provided by graph theory [30]. The concept 
discussed above allows extracting subgraphs and paths linking 
molecular features to their neighborhood on the molecular, the 
Omics tracks, and the sample specifications (clinical) level. 
 

 
 
[V] CONCLUSION 
 
Omics integration clearly bears the potential of expanding our 
understanding of complex diseases, and substantial efforts for 
bridging Omics levels have already been reported 
[2,9,10,25,31]. However, for building descriptive models 
characterizing diseases at the interface of clinical 
specifications and molecular processes in the realm of higher 
order structures as proposed for formal and biochemical 
systems [32] more fundamental issues have to be tackled. We 
consider annotation and relations modeling embedded in 
flexible data and knowledge management frameworks as a 
fundament for concise cross-Omics data interpretation on the 
level of descriptive graphs. Only as cataloguing efforts on the 
molecular level expand, and the number of different Omics 
screens on specifically defined clinical etiologies increase, 
model building in the realm of Systems Biology and Systems 
Medicine will become amenable.  
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