
 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

83

Received: 26 Sept 2019

Accepted: 15 Oct 2019

Published: 20 Oct 2019

KEY WORDS

Software testing,

Genetic Algorithm,

Fitness Function,

White box testing.

*Corresponding Author

Email:

seema.fca@mriu.edu.in

Tel.: +91-9873553830

ARTICLE
GABVIE MODEL FOR SOFTWARE TESTING

Seema Sharma*, Shaveta Bhatia
Faculty of Computer Applications, MRIIRS, Faridabad, INDIA

ABSTRACT

Software testing is an immensely important topic, which helps us to create robust and effective software. Software testing means to

compare the expected outcomes and real outcomes to ensure that the software product is free from error. The software testing is essential

as the software bugs could be costly and risky. The testing by considering the code is referred to as the white box testing. There are many

factors that should be consider before testing the software like statement coverage, decision coverage, branch coverage, condition

coverage etc. This paper proposes a novel and effective model to carry out white box testing by finding the importance of a variable of the

program code using Genetic Algorithms. The model is promising and would therefore help both the researchers and practitioners alike. The

fitness function in Genetic Algorithm has been calculated mathematically which outperforms the earlier traditional methods. It includes the

information necessary for ascertaining the importance of a variable.

INTRODUCTION

Software testing has been conducted with an intention to find bugs and verify whether software is fit for
use or not. It provides the information of quality of software to the stakeholders. Software testing is

conducted for the analysis to check.

1. Whether it meets all requirements to design and development of the product
2. All types of inputs must be responded or not

3. All functions perform well or not

Software testing is very complicated task. It accounts for the major portion of the project time [1]. It can
be classified as White box and Black box testing [3]. White box testing explores the code while the black

box testing only sees the input and output [4]. The grey box testing lies in between them. Though many
techniques are available for the efficient and effective testing of a program, as per the literature review,

they do not consider the occupancy of a variable in a program [2]. This research has taken the above
limitation by adding the parameters which are “variables” used in code for appropriate testing taken as

the initial population in GA.

In this paper; a novel model is proposed to accomplish white box testing. The work uses the frequency of a
variable used in the program code by calculating its dynamic priority based on its occurrence [2].

Furthermore, the fitness of a variable is calculated mathematically based on the rate of recurrence. Since

the search space can become very large, therefore a heuristic search technique is needed to access the
importance and hence to select a variable. A heuristic technique is fast calculation method for getting the

optimal solution. Genetic Algorithm is a heuristic search process which is based on the survival of the
fittest [19-22]. The explanation of the algorithm has been included in the paper.

The work is organized as follows. Section 2 of this paper presents a brief literature review. Section 3

presents a discussion on Genetic Algorithms. Section 4 presents the proposed work and algorithm and
the last section concludes.

LITERATURE REVIEW

There has been immense work has been done on software testing by various researchers. But still to

develop the better model for testing the software. The proposed work deals with developing the model
used to test the program code which is discussed in the next section. Some of the related works done by

the prominent researchers and the issues in this field are discussed below. A new strategy has been
proposed on the basis of existing work.

The combined features of Cuckoo search and genetic algorithm has been proposed by the authors Khan

et al. in 2018 [14] for optimization of test cases. A cuckoo search algorithm first ameliorates arbitrarily
generated test cases and after that, genetic algorithm is used to create new test cases. There is a need of

more improvement in their algorithm in order to get efficient and optimized result. Also the cuckoo search
algorithm is applied only for the amelioration of test cases and genetic algorithm is applied for the new

generation of test cases, which increase the complexity of the algorithm. Bashir and Nadeem in 2017[10]

proposed a technique for generating the test case for mutation testing. Since mutation testing is time
consuming and expensive task therefore the author has taken genetic algorithm approach for reducing

the cost. A new fitness function was introduced; eMujava and the results were compared with standard
fitness functions. The authors have taken four parameters for testing fitness function for state based and

object oriented program, two ways cross over and adaptable mutation. However, other versions of cross

ISSN: 0976-3104

 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

84

over and mutation have not been taken.

A new approach have been implemented for the automatic test case generation in order to improve the

efficiency of software by Khan and Amjad (2015) [13]. In this paper the author suggested that random
method is inadequate for the selection process of test data. For this purpose the author used mutation

analysis and genetic algorithm approach to produce test data for program code. The inter procedural
control flow graph (CFG) is used for the program. This weight of CFG is distributed among all edges

according to the pareto principle. However the algorithm introduced is suitable for unit testing but if we
want to test the overall code then mutation testing is not effective. The Markov Chain approach with

genetic algorithm has been applied by the authors Boopathi et al. 2014 [11] for testing the software. In
his approach, the code is firstly converted into control flow graph and then optimized to implement DD-

graph. The fitness function is based on coverage of path in DD-graph. The weights of edges are assigned
with the help of Markov transition probability matrix and the fitness function of genetic algorithm is

calculated as the sum of all the weights of edges in DD graph. The operators of genetic algorithm are
applied for generating the test cases to cover maximum path. Only one point crossover and uniform

mutation genetic operator is used. The results are not compared with simple genetic algorithm or genetic
algorithm with varying population or with random techniques.

Saini and Tyagi (2014) [5] have used two different optimization techniques, Genetic Algorithm (GA) and

Clonal Selection Algorithm (CSA)for test case generation. This paper presents to initiate the test data by
using these techniques to test the basis path testing. Korel‟s Distance Function (Korel 1990) is used for

accomplishment of fitness function. Since basis path testing means every statement and every branch
should be test. But fitness function used examined only branch predicates. Various experiments have

been evaluated in Matlab like square root, quadratic equation, trigonometry function, Linear equation etc
and compare the results with the random-testing technique. Also using these techniques we cannot

conclude, which algorithm is best GA or CSA. Minj and Belchanden (2013) [3] had presented the
technique to produce test cases through UML State diagram, instead of control flow graph, which is totally

based on path oriented approach. UML State chart modeling is used to show the control and flow of data.
It comprises of five following parameters.

 Initial state

 Final state

 No. of intermediate States

 Transition function

 Process function

Nirpal and Kale (2011[4]) presents use of genetic algorithms in software testing for automatically creation

of test cases. In this method, the target path is selected and then sequences of operators of genetic
algorithm are executed in order to achieve the good test cases. They have used triangle classification

program for experiment and compare it with Young Chen method method [12]. But if the code consists of
many functions, the probability of testing the function using above approach may not work. Fitness

function is evaluated by calculating distance covered between the executed path and the target path.
Doungsa et al. [23] used the genetic algorithm for generating the test cases in path testing from UML

state machine. The test data covered the maximum transition of the possible path. The number of test
data generated was increased in number as one test data test only one path, so for maximum coverage

the author had increased the number of test cases. However the result is suitable for the simple program
without loop.

Our work proposed considers the variable found in the code as a parameter as well as all of the below

parameters and promises to give much better performance for testing the program code

Table 1: Parameters used in Software Testing (Source-Self)

Type Author Name Cross
Over rate

Mutatio
n Rate

Selection Population Iterations Encoding

Path
testing

Rijwan Khan, Mohd Amjad

and Akhlesh Kumar
Srivastava 2018

0.8 0.2 Random 20 10 Binary

Path
testing

Bashir, M.B. and Nadeem,

A., 2017

0.5 [1-0] Random 50 10 Real

 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

85

Mutation
testing

Rijwan Khan, Mohd. Amjad

Condition:
Mutation

score >
0.5

Conditio
n:

Mutatio
n score
> 0.5

Tournament _ 20 Real

Data Flow M. Boopathi1, R. Sujatha,
C. Senthil Kumar, S.
Narasimman

0.6-0.8 0.0-0.2
Random 5 5 Real

Path
testing

Poonam Saini , Sanjay
Tyagi

0.8 0.15 Roulette wheel 20 100 Binary

Path
testing

Jasmine Minj Lekhraj
Belchanden:2013

0.8 0.2 Roulette whell
method

4 10 Binary

Path

testing

Premal B. Nirpal and K. V.

Kale(2011) 0.9 0.01 Random 1-1000 1000
Binary

Parallel

Path
testing

Doungsa, Dahal, Hossain &

Suwannasart 0.5 0.05 Random 10*10 100

Binary

MATERIALS AND METHODS

Genetic Algorithm (GA) is a heuristic search process based on the survival of the fittest [1]. The algorithm

was invented by Holland in 1960‟s [2]. The algorithm is very useful for finding the solutions of
optimization problems. The search proceeds in the following way. The process starts with an initial

population. The population is composed of chromosomes and each chromosome has cells. The cell may
depict the inclusion or exclusion of a particular feature, in case of a Binary population. The number of

chromosomes is initially, low. The process builds up a buffer of chromosome; each generation is more fit,
on an average as compared to the previous generation [16]. This is achieved by the crossover and

mutation operator. The crossover operator takes two chromosomes and produces a new chromosome.
The operator can use one point mechanism or two point crossover or multipoint cross over, from amongst

the many available options. In the one point cross over, one crossover point is selected, binary string from
beginning of chromosome to the crossover point is copied from one parent, the rest is copied from the

second parent. In the case of two point cross over two points are selected and new chromosome(s) is
produced. The mutation operator changes an existing chromosome and may end up producing a very

good chromosome. As per the literature review the mutation operator inculcates diversity. Flip bit is one of
the types of mutation. The above two operators are based on the selection of chromosomes. There are

many types of selections like Rowlett wheel selection or tournament selection, to name a few. The Rowlett
wheel selection selects a chromosome based on the commutative fitness. [17]

A chromosome is assigned a fitness based on the given problem. The fitness should contain the crux of

the problem and can use functions like , where can be found by empirical analysis.
Note that the value of this function is between 0 and 1 and hence this function assigns a value which can

be perceived as the probability of the chromosome being fit [18]. The termination of GA can be done

either when the number of generations exceeds the set limit or there is practically no change in the
chromosomes. The steps of Genetic Algorithm are depicted in [Fig. 1].

Fig. 1: Steps of each iteration of GA

………

The pivot concept behind the Genetic Algorithm based variable Importance evaluation (GABVIE) model is

taking “variables” used in the program code as a constraint used to generate the test cases to test the
path testing of a program code. The proposed algorithm assigns fitness to a variable depending upon its

occurrence in the code and the frequency. The frequency of a variable is counted as follows. The

occurrence of a variable in the „if‟ block, assigns 1 to the frequency and that inside a „for‟ loop (or „while‟
for that matter) assigns n to it. The weight is determined by the frequency of the selected variables,

multiplied by a constant , determined empirically. The above procedure would result in the selection of

 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

86

the most important variables.

From amongst the given fitness function is chosen as it results in a value between 0 and

1, which can be perceived as the probability of the selection of variable. Here, is 0 or 1, depending

upon if the ith variable is selected or not and is the weight. This is followed by the application of the

GA process. The cross over and mutation applied till the population reaches its termination condition. The

following algorithm and [Fig. 2] depicts the process.

Fig. 2: Working model of GABVIE

………

Initially two arrays var and count are initialized to NULL. This is followed by populating the var[] array to

variables in the program after scanning the program (Step 3). The program is again scanned for any
occurrence of „if‟ after which the count of the variable found is incremented by 1 and for 'loop' the count is

incremented by 'm' the number of times, a loop runs. This is followed by the calculation of fitness. A binary
population is then created. Row wheel selection is then applied to find the points on which one point

cross-over is to be applied. Random mutation is then applied. The process is repeated till the stated
numbers of generations are reached.

ALGORITHM:
Our key idea is to take a program code as a input and all the variables used in the program code are

passed as parameters in the above model and cast this software testing problem as one of finding
appropriate fitness of the functions in the program.

Algorithm 1: GABVIE v, t)

Input: Program statements with variables as parameters
Output: Fitness of the functions defined in program code

For i – 1 to n do
Scan

if equals (t, v[])
then token <- var[i++]

end if

Scan
If equals (token, block(if))

Scan block(if)
For i – 1 to n

if equals (token, var [])

count [] <- count[] +1
end if

end for
end if

if equals (token, block(loop))

Scan block(loop)
For i – 1 to m

if equals (token, var[])
count <- count +m

end if
end for

end if

cell[] <- var[]

 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

87

create PopulationChromosome (count, cell[])

for each cell
if equals (cell [] , 1)

calculate fitnessfunction
fitness <-fit (count [])

return fitness
end if

end for

Select MostfittedChromosome
Point <-RowlettWheel (fitness, PopulationChromosome)

Calculate OnepointCrossover (point)
Calculate Mutation (random (PopulationChromosome))

Repeat until gen <=maxgen

The model has been implemented in Python and checked for few programs. It was observed that some

conditions will be imposed on the input programs. In order to obtain the requisite fitness, the program has
been divided in to two parts. The first part counts the occurrences of variables and decides the input to

the fitness function and second part gives this input to the module implementing genetic algorithms.

[Table 2] shows the function used in the first in the first model and [Fig. 3] shows flow of the program.

Table 2: Functions used in model for Testing (Source-Self)

Function Name Arguments Description

_file File Name Opens code file and breaks it into a stream of tokens, returns the stream of tokens in a
list named ‘str’.

_var str Scans the input stream of code and selects the variables of data type int, char and

float except for ‘i’ and ‘j’ which are reserved for loop iterations. Returns a list named
‘var’ containing the names of variables used.

_scan str Scans the code and detects the variables that are scanned by the user and takes the

input by user. Returns a list ‘scan_var’ with the names of scanned variable and list
‘value’ with the respective value of those scanned variables.

_cou temp, scan_var,

value

‘temp’ contains the for loop condition; This function calculates the number of times a

loop iterates. Returns the count of iterations evaluated by the expression in ‘temp’ as
variable ‘n’.

_count str, var, scan_var,

value,

Scans the code and calculates the number times a variable is used in the program.

Returns a list ‘count’ containing the count of variables in ‘var’

Fig. 3: Flow of Program

………

RESULTS

The model was tested the 10 C programs and it was found that the variables which were used more got
the higher fitness value. It was also observed that the existing models cited above did not give requisite

importance to the variables frequently used and hence was taking in the appropriate treatment of such

variables leading to the test cases that may not contain such variables. In our case such variables were

 ISSUE: COMPUTER SCIENCE

www.iioab.org | Sharma & Bhatia 2019 | IIOABJ | Vol.10 | 2 | 83-88 |

88

being always a part of list being generated for creating test cases.

CONCLUSION

The work presented a novel model for selecting variables for testing. The model uses Genetic Algorithm.
The fitness of the variables is determined using the frequency of occurrence. This is followed by the

application of standard GA. The model has been carried out some results have been stated. The results
are encouraging. Currently the model is being tested on a larger set of programs. The calculation of

constants stated in the work would be done by extensive empirical analysis. The model has been
proposed and the implementation being carried out. This model would pave way for the applicability of GA

in testing.

ABOUT AUTHORS
Seema Sharma is a Research Scholar and Shaveta Bhatia is an Associate Professor, MRIIRS, Faculty of Computer Applications,

Faridabad, India

CONFLICT OF INTEREST
There is no conflict of interest.

ACKNOWLEDGEMENTS
None

FINANCIAL DISCLOSURE
None

REFERENCES

[1] Alzabidi M, Kumar A, Shaligram AD. [2009] Automatic

Software structural testing by using Evolutionary Algorithms

for test data generations. International Journal of Computer

Science and Network Security, 9(4):390-395.

[2] Girgis MR. [2005] Automatic Test Data Generation for Data

Flow Testing Using a Genetic Algorithm J UCS. 11(6): 898-

915.

[3] Minj J, Belchanden L. [2013] Path Oriented Test Case

Generation for UML State Diagram using Genetic Algorithm.

International Journal of Computer Applications, 82(7).

[4] Nirpal PB, Kale KV. [2011] Comparison of software test

data for automatic path coverage using genetic algorithm

development, 4(5).

[5] Saini P, Tyagi S. [2012] Test data generation for basis path

testing using genetic algorithm and clonal selection

algorithm, Int J Sci Res, 3(6):2319-7064.

[6] Sharma A, Rishon P, Aggarwal A. [2016] Software testing

using genetic algorithms Int J Comput Sci Eng Surv

(IJCSES), 7(2):21-33.

[7] Srivastava PR, Kim TH. [2009] Application of genetic

algorithm in software testing. International Journal of

software Engineering and its Applications, 3(4):87-96.

[8] Goldberg DE. [1999] Genetic and evolutionary algorithms

come of age. Communications of the ACM, 37(3):113-120.

[9] Chauhan N. [2010] Software Testing: Principles and

Practices. Oxford university press.

[10] Bashir MB, Nadeem A. [2017] Improved genetic algorithm

to reduce mutation testing cost, IEEE Access, 5:3657-

3674.

[11] Boopathi M, Sujatha R, Kumar CS, Narasimman S. [2014]

The mathematics of software testing using genetic

algorithm. In Proceedings of 3rd International Conference

on Reliability, Infocom Technologies and Optimization IEEE,

1-6.

[12] Chen Y, Zhong Y, Shi T, Liu J. [2009]. August Comparison of

two fitness functions for GA-based path-oriented test data

generation. In 2009 Fifth International Conference on

Natural Computation IEEE, 4:177-181.

[13] Khan R, Amjad M. [2015], December, Automatic test case

generation for unit software testing using genetic algorithm

and mutation analysis. In 2015 IEEE UP Section

Conference on Electrical Computer and Electronics

(UPCON), IEEE, 1-5.

[14] Khan R, Amjad M, Srivastava AK. [2018] Optimization of

Automatic Test Case Generation with Cuckoo Search and

Genetic Algorithm Approaches. In Advances in Computer

and Computational Sciences, Springer, Singapore, 413-

423.

[15] Last M, Eyal S, Kandel A. [2005] Effective black-box testing

with genetic algorithms. In Haifa Verification Conference

Springer, Berlin, Heidelberg, 134-148.

[16] Mishra DB, Mishra R, Acharya AA, Das KN. [2019] Test

Data Generation for Mutation Testing Using Genetic

Algorithm. In Soft Computing for Problem Solving, Springer,

Singapore, 857-867.

[17] De ABT, Martins E, De SFL. [2007] Generalized extremal

optimization: an attractive alternative for test data

generation. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, ACM, 1138-1138.

[18] Knowles J, Corne, D. [1999] The pareto archived evolution

strategy: A new baseline algorithm for pareto multiobjective

optimisation. In Congress on Evolutionary Computation

(CEC99), 1:98-105.

[19] Bhasin H, Singla, N. [2012] Harnessing cellular automata

and genetic algorithms to solve travelling salesman

problem. In International Conference on Information,

Computing and Telecommunications, (ICICT-2012), 72-77.

[20] Blanco R, Tuya J, Adenso-Díaz B. [2009] Automated test

data generation using a scatter search approach.

Information and Software Technology, 51(4):708-720.

[21] Deb K, Pratap A, Agarwal S, Meyarivan TAMT. [2002] A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE

transactions on evolutionary computation, 6(2):182-197.

[22] Engström E, Runeson P, Skoglund M. [2010] A systematic

review on regression test selection techniques. Information

and Software Technology, 52(1):14-30.
[23] Doungsa-ard C, Dahal KP, Hossain MA, Suwannasart T.

[2007] An automatic test data generation from UML state

diagram using genetic algorithm. In: Proceedings of the

Second International Conference on Software Engineering

Advances (ICSEA 2007). 25-31 Aug. 2007 Cap Esterel,

France. IEEE Computer Society Press. 47-52.

