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ABSTRACT 
 
Scientific researches and technological developments, although they seek to solve the problems related to the reduction of the cost of 

generation and the emissions, are in the course of finding the best solutions. It is in this context that our paper is located and which focuses 

on the problem of dynamic economic environmental dispatch (DEED) using a Biogeography-based optimization (BBO). Ramp rate limits, 

Prohibited of operation zones (POZs) and effects of loading valve points are taken into account. The proposed technique integrates the Cauchy 

operator and the explosion method in the original BBO algorithm, to avoid the random search mechanism. The BBO is inspired by  geographical 

distribution of species within islands. However, this optimization algorithm works on the basis of two concepts-migration and mutation. In this 

paper a non-uniform mutation operator and a Shannon’s entropy based-method have been employed. The proposed technique shows a better 

diversified search process and therefore more precisely finds solutions with a high rate of convergence. This algorithm with new mutation 

operator is validated on forty-unit test system. The results showed that the proposed technique provides better compared optimal solutions 

with over ten meta heuristics techniques. 

 

INTRODUCTION 
  
The dynamic economic environmental dispatch problem is to minimize two competing objective functions, 
total fuel cost and emission, while satisfying several equality and inequality constraints. In this paper, an 

improved of the original biogeography-based optimization is proposed and adapted for solving dynamic 
economic environmental dispatch problem. In order to enhance the performance of the original 

biogeography-based optimization, we will introduce the Cauchy operator and the extended entropy weighted 
reference approach.  

 
Electricity, like all energy forms or vectors generates environmental, economic and social impacts that are 

trying to limit. One of the challenges for the 21st century is that of production from clean, reliable, safe and 

renewable resources that can replace thermal and nuclear power plants. In this context, some states are 
introducing environmental policies to encourage electricity producers to reduce their greenhouse gas 

emissions and thus their direct or indirect contributions to climate change. 
 

With the economic dispatch, sending emissions has become a major issue in market conditions. It aims to 
reduce the harmful emissions caused by power plants to fossil fuels such as CO, CO2, NOx and SO2 [1-2]. 

This paper focuses specifically on this axis of electrical power systems to reduce carbon emissions for the 
thermal plants with equality and integrality constraints. 

 
Thus, the combination of the above problems in one problem called economic emission dispatch (EED) 

problem became inevitable. However, due to the dynamic nature of the today network loads, it is required to 
schedule the thermal unit outputs in real time according to the variation of power demands during a certain 

time period [3]. To solve this modified EED problem known as dynamic economic emission dispatch (DEED), 
several mathematical formulations have been suggested in the literature [3-9]. In the most references, the 

DEED problem is considered as dynamic optimization problem having the same objectives as EED over a 
time period of one day, subdivided into definite time intervals of one hour with respect to the constraints 

imposed by generator ramp-rate limits (RRL) [3]. Therefore, the operational decision at an hour may be 
influenced by that taken at a previous hour. 

 
Other constraints such as Prohibited Operation zone (POZ) and Valve Point Loading Effects (VPLE) have 

been taken into account in some works [10-12].However, incorporating VPLE in the fuel cost function makes 
it with ripples and the problem will be with multiple minima. On the other hand, POZ constraints due to 

physical operation limitation such as vibrations in the shaft bearing [13-14] create discontinuities in the 
objective functions. Therefore, the DEED becomes highly nonlinear problem with non-convex and 

discontinuous fitness functions.   
 

Goal of this article is to propose a new approach to introduce a Cauchy operator in the classical 
Biogeography-Based Optimization for Economic/Environmental Dispatch problem. This methodology use a 

new optimization technique incorporating an Extended entropy-weighted reference approach to obtain 

convergence in the overall solution in a computation time, that there is a persistent requirement to solve a 
DEED problem. 

 
A considerable amount of research works have been suggested for solving this kind of problems. Classical 

methods like dynamic programming [15], linear programming [16], lambda iteration [17] and interior point 
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[18] methods have been used to solve the static EED. However, several criticisms have been addressed to 
these techniques because they require an initialization step and are iterative. That can cause the 

convergence of the search process into local optima. Moreover, they may fail to solve the dynamic case 
including above constraints. 

 
Among meta heuristic-based optimization techniques, genetic algorithm [3-19], particle swarm optimization 

[11], simulated annealing [20-21], artificial bee colony (ABC) [14], tabu search [22], differential evolution [6] 
and bacterial foraging [7] have been suggested for solving the EED problem.  

 
Although these techniques have proved superior to traditional methods, they are criticized in later studies 

[23]. Their effectiveness is sensitive to the form of the problem constraints and the number of units. Several 
studies prove that the BBO algorithm works better or just as well as other biologically inspired algorithms. 

References [24 and 25] contain a presentation of the BBO's main idea, its definitions and steps, and the 
validation of its good performance by Simon. 

 
The performances of the BBO are improved in the reference [26] by the insertion of other distinguishing 

features of the heuristic algorithms. An oppositional BBO (BBOL) has been proposed and proved 
mathematically, where there is a highest probability of approaching the solution of the problem [27]. 

Regarding [28] Chen and Ma have explored the performance of six BBO migration models by extending the 
number of species in equilibrium theory of biogeography and proved that the sine migration model 

outperforms other models. 
 

To evaluate the BBO's performance, it is also compared to other algorithms that each has a structure and a 
technical aspect of optimization. It is the quality of research that differs between them. The Cauchy operator 

is integrated in this study to improve globally and locally the optimization technique and to ensure 
convergence in a shorter calculation time. This integration has been used in some optimization techniques 

to improve overall search capability [29]. 
 

Finally, a multi-attribute decision-making method (MADM) based on Shannon's entropy is proposed in this 
study to classify the non-dominated solutions obtained, since EED is a bi-objective optimization problem with 

functions contradictory. Thus, the results with any optimization algorithm will be a set of non-dominated 

solutions called the Pareto front. However, providing an optimal Pareto solution for decision makers (DMs) is 
a persistent requirement. The concept of Shannon's entropy is used in several scientific domains [30] and 

single-sensor fault location [31]. 
 

Thus, a new method exploiting the advantages of BBO with mutation and Cauchy operator has been 
proposed in this study, for solving the DEED problem with respect to the all above constraints. This 

optimization symbolized by CBBO integrates the mutation and Cauchy operator into the BBO technique. On 
the other hand, new decision making method based on Shannon’s entropy, called extended entropy-

weighted reference (EEWR) approach, is developed and incorporated in the CBBO algorithm to select the 
suitable solution among all non-dominated solution provided by the optimization algorithm. Unlike other 

techniques such as those based on graph theory [32] and Z-transformation [33]. The EEWR is characterized 
by uncomplicated mathematics [34].  

  
The main contributions of this work are summarized on the one hand by the application of a new 

optimization technique called CBBO to program the energy production of the thermal units according to the 
expected load variations, and on the other hand by The use of a EEWR-based technique proposed for 

decision-making as a first attempt to resolve the DEED problem using the CBBO algorithm. In addition, the 
consideration of all the above constraints simultaneously in the DEED problem. While noting that the RRL 

constraints have been taken into account during the transition between the last hour of the day and the 
next day for the first hour. 

 

Mathematic formulation 

 
In the literature, the dynamic economic emission dispatch (DEED) problem was considered as a multi-

objective optimization problem (MOP). It aims to minimize simultaneously the total emission and total fuel 
cost by finding the power generation of thermal plants according to the predicted load demands. The 

resolution of the DEED problem can be accomplished by solving the static EED (SEED) problem over a 
certain period of time subdivided into smaller time intervals. In the present work, DEED problem objectives 

and constraints are described as follows. 
 

Objective functions 
 
Thermal units with multi-steam admission valves that work sequentially to cover ever-increasing generation, 
make the total fuel cost with higher order nonlinearity due to the VPLE, as illustrated in [Fig. 1]. 

Unfortunately, neglecting the VPLE, which is required when using classical methods, causes some 
inaccuracy in the solution of the DEED problem. Taking into account the VPLE constraints, a sinusoidal form 

is included in the total non-smooth cost function expressed in ($/h), as given in equation (1). The second 
objective corresponding to the total emission in (ton/h) is described by equation (2). 
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where ia , ib , ic , id
and  ie

 are the cost coefficients of the i-th unit. While i , i , i , i  and  i  are the 

emission coefficients. 
t

iP
 is the output power in MW at the t-th interval.  T is the number of hours. In this 

study,  24T  . 

 

In several works the bi-objective DEED problem is converted into a mono-objective optimization problem 
[23]. In this study, the price penalty factor (PPF)-based method is adopted. Thus the combined economic-

emission objective function FT can be described by equation (3). 
                     

       1T T TF C E                                                                           (3) 

 

where, 
 0,1rand 

 . For each generated value of , the function FTis minimized to obtain the optimum 

solution that can be a candidate solution to be 

PPF of all thermal units. As shown in equation (4), the PPF of the i-th unit is the ratio between its fuel cost, 

maxiC
 , and its emission, maxiE

 , for maximum generation capacity. 

                 
max

max

i

i
i

C
PPF

E
                                                                              (4) 

 

Problem constraints 
 
The DEED problem is solved by minimizing the function FT defined by equation (3) with respect to the 

following constraints. 
 

 Generation capacity 

 

Due to the unit design, the real power output of each unit i should be within its minimum limit 
min

iP
  and 

maximum limit 
max

iP
 . 

                              
min max , 1, ,t

i i iP P P i N                                                      (5) 

 

 Power balance constraints 

 

At each time period t, the total power generation must cover the total demand power  
t
DP

 plus the total 

transmission losses 
t
LP

 . Thus, the power balance constraints can be described by the following equation.   

                               

1

0,  1,...,

N
t t t

i D L

i

P P P t T



                                          (6) 

where 
t
LP

 can be calculated using the constant-loss formula [3] given by equation (7). 
 

                       

1 1 1

N N N
t t t t
L i ij j oi i oo

i j i

P P B P B P B

  

                                          (7) 

where
ijB

, oiB , ooB
are the loss parameters also called B-coefficients. 

 

 Generating unit RRL 
 

In practice, the power generation of each unit i during two consecutive time periods islimited by its RRLs 

defined by equations (8) and (9).   

  
1t t down

i i iP P R        (8) 

               
1 upt t

i i iP P R                                                                      (9) 
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where, 
1t

iP 

  is the previous output real power of the i-th machine. 
down
iR

 and 
up
iR

are the down-ramp and 
up-ramp limits of the i-th unit in (MW/time period).  

 
As one of the contributions of this work, the RRL constraints are taken into account during the transition 

between the last hour of the day until the next day for the first hour. Two constraints are embedded in the 
problem formulation and they are described by equations (10) and(11). 

                              
24 1 down

i i iP P R                                              (10) 

                               
1 24 up
i i iP P R                                              (11) 

 POZ constraints 

 
The POZ constraints are described as follows. 

                              

min
,1

,, 1

max
,

, 2,...,

i

t down
i i i

upt t down
i i i k ii k

up t
i ii z

P P P

P P P P k z

P P P



  



   

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

                                  (12) 

 

Where,  ,
down

i kP
 and   ,

up
i kP

are down and up bounds of POZ number k. iz
  is the number of POZ for the i-th 

unit due to the vibrations in the shaft or other machine faults. 
 

Therefore, the machine has discontinuous input–output characteristics [19]. [Fig. 2] shows the fuel cost 
function for a typical thermal unit with POZ constraints. 

 
By considering the generation capacity, RRL and POZ constraints, the minimum and maximum limits of the 

power generation   
t

iP
of the i-th unit for the period tare modified as follows. 

 

           

   

   

min 1 max 1
,1

min 1 max 1
, 1 ,

min 1 max 1
,

max , min , ,

max , , min , ,

max , , min ,
i
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i i i i i i i i

t t down up t t up down
i i i i i k i i i i i k
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i i i i i i ii z
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P P P R P P P P R P

P P R P P P P R

 

 


 

    



    

    


                          (13) 

where   
2,..., ik z

                                   

                                                  
                           

 
 

 
 

 
 

 
 

 

 
 

Fig. 1: Fuel Cost Function with Five Valves (A, B, C, D, E).                                     

……………………………………………………………………………………………………………………… 

 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2: Cost function for a thermal unit with POZ constraints 

……………………………………………………………………………………………………………………… 
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Cauchy biogeography-based optimization 
 
The classical BBO algorithm with Migration and Mutation operator, is well detailed in the references [24-25-

26]. [Fig. 3] illustrates the flowchart of this proposed BBO algorithm. In this work, the Cauchy operator is 
used in the lightening phase to improve the local and global exploration capabilities of the optimization 

algorithm and to obtain convergence in the overall solution in a computation time. Using a Cauchy operator 
in optimization technique has been integrated to certain algorithms to improve overall performance. [23] 

This is illustrated in [Fig. 4]. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flowchart of the proposed optimization algorithm 

……………………………………………………………………………………………………………………… 

 

Thereafter, the new solution is obtained using the equation (14). 

                                      0,1i i

j jx x CAUCHY               (14) 

                                 where, 

                               
 2

1
0,1

1 ( )i

j

CAUCHY
x




       (15) 

 

  
 

 
 

 
 

 

 

 

 

 

 

Fig. 4: Standard Cauchy and Gaussian distributions 

…………………………………………………………………………………………………………………………… 
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Extended entropy-weighted reference approach 
 

The DEED is a bi-objective optimization problem with contradictory functions. Thus, results with any 
optimization algorithm will be a set of non-dominated solutions called Pareto front. However providing 

adequate candidate Pareto-optimal solution for the decision makers (DM) is a persistent requirement.  
In this study, a Shannon’s entropy-based multi-attribute decision-making (MADM) method is proposed to 

rank the obtained non-dominated solutions. The concept of Shannon’s entropy is used in several scientific 

domains such as for materials selection [30] and single-sensor fault location [31]. This concept can be 
adopted for MOPs with n objective functions and m non-dominated solutions as follows. 

 

Step 1: Construct the decision matrix  
 ij m n

X x



. Where  ijx

 called performance index is the value of 
the j-th function for the i-th solution. 

 
Step 2: Normalize matrix X in order to have performance indices comparable and dimensionless [30]. 

                          

*

2

1

ij

ij m

ij

i

x
x

x





                    (16) 

Step 3: Calculate entropy jh
  as follows.  

                

* *

0

1

ln , 1,...,
m

j ij ij

i

E E x x j n


  
                         (17)  

Where, 
 0

1

ln
E

m


 and 

*ln ijx
  is considered 0 for 

* 0ijx 
 . 

 

Step 4: Compute the weight of each objective j. 

                                

 
1

1

1

j

j n

j

j

E
w

E






                   (18) 

On the other hand, the decision maker can assign a degree of importance js
  for each objective function j 

called subjective weight. Thus, weights should be modified as follows. 
 

                                           

*

1

j j

j n

j j

j

s w
w

s w





              (19) 

 

Step 5: Determine the i-th co-ordinate reference point (CRP) per objective function. It is defined as the 
highest performance index for maximization and the lowest performance for minimization [31]. However the 

DEED is minimization problem. Thus, the CRP can be found as follows. 

                                       
*minj ij

i
r x           (20) 

 
Step 6: Calculate the deviation of each performance index from the CRP for each objective function. Then, 

determine the maximum deviation for each alternative respecting all objective functions using the following 
equation. Each non-dominated solution is considered as alternative. 

                             

* * *maxi j j j ij
j

z w r w x 
                            (21) 

 

Step 7: Classify all alternatives according their maximum deviations. Then, select the alternative with rank 
one as the optimal alternative. 

 
MATERIALS AND METHODS 
 

Optimization based on biogeography (BBO), is a new algorithm inspired by the principle of displacement of 

species that depends mainly on the topographical characteristics of the space considered habitat and time. 

Similarly at the GA, BBO is a population-based technique. The similarities and differences between the 

characteristics of GA and BBO were examined in [25]. Individuals represented by chromosomes in GA are 
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represented by habitats in BBO. Like GA, BBO has two main operators that are mutation and migration 

operators. Migration includes emigration and immigration, which are used to provide an improved solution 

to the optimization problem. All solutions will be modified with a predefined probability. At an iteration t, the 

flow chart of the migration operator is described in [Fig. 3]. In the BBO algorithm, the random change is 

modeled by the mutation operator. As in GA, the mutation is applied to ensure population diversity at the 

next iteration. The flowchart of the proposed BBO algorithm with mutation operator is given in [Fig. 3]. In 

order to improve the global and local exploration capabilities of the optimization algorithm and to ensure 

convergence in the overall solution in a short computation time, the Cauchy operator is integrated. Since 

DEED is a dual objective optimization problem with conflicting functions. Thus, the results obtained with any 

optimization algorithm will constitute a set of non-dominated solutions called the Pareto front. However, 

providing a Pareto-optimal candidate solution suitable for decision makers (DS) is a persistent requirement. 

In this study, a multi-attribute decision-making (MADM) method based on Shannon's entropy is proposed to 

rank the obtained non-dominated solutions. 

 

RESULTS 
 

Implemented of the proposed algorithm 
 

Having been applied for the first time to solve the DEED problem, the CBBO will be tested in this section on 

forty-unit test system. In order to demonstrate the effectiveness of the proposed optimization technique, a 

comparison with CBBO algorithm and more than ten meta heuristic-based techniques used for solving the 

power dispatch problem is presented. For fair comparison, CBBO and BBO algorithms have been 

implemented with same parameters. Results have been obtained using MATLAB R2009a installed on a PC 

with i7-4510U CPU @ 2.60 GHz, 64 bit.  

 

Simulation results for forty-unit system 
 

To further demonstrate the applicability of this method for real power network, a large test system is also 

used that is the forty-unit system with VPLE. The DEED problem is performed for this system with total power 

demand PD of 10500 MW. Fuel cost coefficients, emission coefficients and operating limits of generators 

are taken from [31]. For validation, the proposed algorithm has been compared with other techniques that 

are recently used in the literature to solve the DEED problem for the forty-unit system. The fitness function 

given in equation (3) has been minimized for 1.38501$ / ton  . Convergence characteristics of fuel 

cost and emission functions using CBBO algorithm are depicted in [Fig. 5]. 

 

Best solution for minimum cost, minimum emission and best compromise solution extracted from the 

Pareto front using the EEWR method are tabulated in [Table 1]. Results for the proposed algorithm CBBO 

and several techniques proposed in the literature [31-37] such as ABC, differential evolution (DE), GA, FA, 

PSO-based methods, etc. are compared in [Table 2]. It is clear that the proposed CBBO provides the 

cheapest generation cost and the lowest emission that are around 121274.7 $/h and 176298.75 ton/h, 

respectively.   

 

DISCUSSION 
 
In order to investigate the importance of the proposed algorithm is tested on a large system. This test 

system consists of forty units. The fuel cost and emission rate coefficients of the system are taken from 
[33]. Total load demand of the system is 10500(MW). Concerning the function fuel cost, the best fuel cost 

achieved is 121274.7 ($ / h), the corresponding emission is 129911.09 (ton/h). While for the minimum 
emission, the best emission achieved is 176298.75 (ton/h), the corresponding fuel cost increased to 

386005.6 ($/h). The convergence characteristic of the emission cost and the total fuel cost is shown in [Fig. 

5]. 
 

In comparison with the other works, we can say first of all concerning the fuel cost function that all the 
results found for the other methods are between 121410.1038 ($ / h) given by Amjady & Nasiri in [43] 

applying the adaptive real coded genetic algorithm, and 124963.5028 ($ / hr) given by Sharma et al in [42] 
using multi-objective differential evolution algorithm, while the best cost achieved is 121274.7 ($ / h) 

corresponds to our approach. Similarly for the function emission, the best value achieved is 176298.75 (ton 
/ h) which represents a brave result compared to the value 176680 (ton / h) quoted by Basu M using multi-

objective differential evolution [3], and also more acceptable compared to the result achieved by Sharma et 
al in [42] which has the value 176691.9677 (ton / h). 

 
The best results of the proposed algorithm for emission and fuel cost compared with other methods are 

illustrated in [Table 2] shows clearly the efficiency of the proposed algorithm.   
 

In other words, the comparison of the optimization solution values obtained by different methods, lets us 
say that the Cauchy Biogeography-Based Optimization CBBO) provides better results. For the total fuel cost 

function, this result has led to a difference of 135.4038 ($ / hr) corresponds to a reduction of 0.11% 
compared to the lowest average reaching 121410.1038 ($ / hr) given by Amjady & Nasiri in [43]. While for 
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the emission function, this result offers a difference of 381.25 (ton / h), corresponding to a reduction of 
0.21% compared to that found by Basu M using multi-objective differential evolution, and reaching 176680 

(ton/h).   
 

Finally, The best optimization results found proves the robustness of this proposed algorithm and explains 
the employment interest of cauchy operator and extended entropy weighted reference approach, which 

facilitate the calculation of the fitness function in a large research space and the convergence towards the 
optimal solutions and therefore the reach of the best distribution of solutions on the Pareto-optimal front. 

 
 

  
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: Convergence characteristics for the forty-unit system 

…………………………………………………………………………………………………………………………… 

 

Table 1: Optimum generation in MW for PD = 10500 MW using CBBO algorithm 
 

Unit Best cost Best 
emission 

Compromise 
solution 

Unit Best cost Best 
emission 

Compromise 
solution 

1 113.8290 118.8684 119.8063 22 524.1471 432.0455 432.2057 

2 113.2299 119.5250 115.6567 23 524.3811 437.9027 433.2583 

3 98.0011 120.0000 119.2039 24 524.2323 433.8896 433.5362 

4 186.3411 171.0041 178.3300 25 521.8417 437.0916 501.0573 

5 87.0371 99.6506 96.0204 26 536.4294 440.2194 437.0645 

6 138.6373 126.4088 134.3184 27 10.0000 28.2081 14.1721 

7 271.3121 293.3165 299.4197 28 10.4862 28.3884 11.7179 

8 288.1500 298.0365 296.6266 29 10.0000 28.3276 16.2792 

9 284.2195 296.4214 287.9952 30 92.5794 98.9027 100.0000 

10 127.1966 136.1537 129.7703 31 200.0000 171.4707 187.0198 

11 166.6426 298.0555 284.9993 32 200.0000 171.9558 187.8337 

12 94.2546 300.0000 242.3292 33 200.0000 169.5057 169.5994 

13 125.0000 435.5130 394.3331 34 196.6399 200.0000 200.0000 

14 392.2697 428.8594 393.9470 35 165.3106 200.0000 200.0000 

15 304.9252 424.3950 392.6474 36 200.2927 200.0000 200.0000 

16 390.9502 418.5687 393.7188 37 119.6147 102.1179 109.8768 

17 490.4709 438.3276 485.8105 38 115.0000 103.8253 106.2503 

18 489.4177 441.5894 488.9333 39 119.6390 102.6590 105.2231 

19 513.9565 437.8936 431.9575 40 520.6428 444.5290 423.5281 

20 511.1485 433.7515 436.0734 TC ($/h) 121274.7 129911.09 125949.3 

21 521.7736 432.6224 509.4806 TE(ton/h
) 

386005.6 176298.75 206914.8 

TC: Total cost ($/h) and TE: Total emission (ton/h) 

 

Table 2: Comparison with other meta-heuristic techniques (forty-unit system, 10500 MW) 
 

Method Minimum cost ($/h) Minimum emission (ton/h) 

CBBO 121274.7 176298.75 

DE (Basu, 2011)  in reference [3] 121840 176680 

ABC (Labbi et al., 2014) in reference [40] 121479.6 NA 

CEP (Sinha et al., 2003)  in reference [41] 122679.71 NA 

MODE (Sharma et al., 2011) in reference [42] 121836.98 129956.09 

NSGAII (Sharma et al., 2011) in reference [42] 124963.5028 176691.9677 

ARCGA (Amjady&Nasiri, 2010) in reference [43] 121410.1038 NA 

APSO (Amjady&Nasiri, 2010)  in reference [43] 121663.52 NA 

TS (Pothiya et al., 2010)  in reference [44] 122288.38 NA 

FA (Yang et al., 2012)  in reference [45] 121415.05 NA 
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CONCLUSION 
 
In this study, a flexible and efficient improved biogeography-based optimization has been successfully 
adapted and applied for solving dynamic economic environmental dispatch problem satisfying several 

equality and inequality constraints. Dynamic economic environmental dispatch (DEED) is a difficult 
optimization problem in the operation of the electrical system. The quality of its optimal solution is 

influenced by the operating constraints, such as the prohibited operating zones and the load effects of the 
valve. In this context, this study presented an optimization based on Cauchy biogeography (CBBO) to solve 

the DEED problem. All the above constraints have been considered. In addition, the power balance 
constraint was considered. The proposed optimization technique integrates the grenade explosion method 

and the Cauchy operator into the classic BBO algorithm to avoid random search in the different stages of 
the BBO. To provide an adequate compromise solution for decision makers, an approach based on an 

extended entropy weighting reference was proposed. The validation of the proposed optimization algorithm 
has been verified on forty-unit test system. The results of comparison with more than ten meta heuristic 

techniques used recently in the literature show that the proposed algorithm gives the best optimal solutions. 
Therefore, according to the results, CBBO can be presented as an algorithm capable of DEED problem. In 

the future direction, one of the most effective approaches to reducing carbon emissions is the integration of 
renewable energy sources into electricity grids. Currently, wind energy sources are the fastest growing 

sources of all renewable sources. So the reproduction of this work to solve the DEED problem incorporating 

wind farms.  
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