
SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

223

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

KEY WORDS

 Multi-objective

travelling salesman

problem, Multi-

objective evolutionary

algorithm, NSGA II,

Decomposition, Ant

colony optimization

Received: 3 June 2017

Accepted: 20 July 2017

Published: 15 Sept 2017

ARTICLE
A SURVEY ON MULTI-OBJECTIVE TRAVELLING SALSMAN

PROBLEM
Kanimozhi Jayamoorthi

1*
, Dinesh Karunanidy

2
, Amudhavel Jayavel

2
,

Subramanian Ramalingam
1

1
Department of Computer Science and Engineering, Pondicherry University, Puducherry, INDIA

2
Department of Computer Science and Engineering, KL University, Andhra Pradesh, INDIA

ABSTRACT
Traveling Travelling Salesman Problem (TSP) is a challenging problem in combinatorial optimization. The important of this problem is due to

the fact that it is used in many fields such as transportation, logistics, semiconductor industry, problem of routing, scan chain optimization

and drilling problem in integrated orbit test, production and many others scientific and industrial fields. In this paper we consider the multi-

objective TSP (MOTSP) which is an extended instance of traveling salesman problem (TSP). Since TSP is a NP- hard problem MOTSP is also

NP-hard problem. In MOTSP simultaneous optimization of more than one objective functions is required. TSP considers and optimizes one

objective function to find the best solution. Instead in MOTSP many objectives are considered and optimized to find the best solutions. Many

algorithms are used to solve MOTSP. Some algorithms give optimal solution and some give the nearest optimal solution. By evolving a

population of solutions, multi-objective evolutionary algorithms (MOEAs) are able to approximate the Pareto optimal set in a single run. It

results in nearest optimal solution within a reasonable amount of time by optimizing many objectives. In this survey, we review the current

state-of-the-art computational algorithms used to solve the MOTSP.

INTRODUCTION

The Travelling Salesman Problem (TSP) is an optimization problem used to find the shortest path to travel

through the given number of cities. Travelling salesman problem states that given a number of cities N and

the distance or time to travel between the cities, the traveler has to travel through all the given cities exactly

once and return to the same city from where he started and also the cost of the path is minimized. This path

is called as the tour and the path length or travel time is the cost of the path [1] [2]. The TSP mathematical

model follows [3] [2]:

Subject to j=1,2,3…...N

 j=1,2,3…… N

Let Cij be the cost for traveling from i-th city to j-th city. Where Xij = 1 if the salesman travels from city-i to

city-j, otherwise Xij = 0. In the mathematical model it is shown that the distance is considered for finding

the best solution.

The travelling salesman problem can be classified as symmetric Travelling Salesman Problem (STSP),

Asymmetric Travelling Salesman Problem (ATSP), and Multi Travelling Salesman Problem (MTSP) [9] [1]. In

travelling salesman problem with increasing the number of cities the existing solutions don‟t provide

optimal solution at the appropriate time. Moreover the solution found by optimizing the distance to travel

to the destination may not always give the best solutions. For the solution optimization more than one

objective needs to be considered. When more objectives functions are considered to optimize the

solutions then it will give the better solutions compared to solutions given by single objective function [5].

This gives the need for MOTSP. MOTSP considers more than one objective functions to optimize the

solutions. In MOTSP, the aim is to simultaneously optimize several conflicting objectives, such as shortest

travelling distance, minimum time, minimum cost, and lowest risk. Under multi-objective framework no

single point is considered as an optimal solution, because an improvement in one objective will cause at

least another objective not being able to be optimized. Therefore, the optimal solution can only be a set of

non-dominated and trade-off solutions. The [6] gives the mathematical model of MOTSP by considering

two objectives for optimization.

The MOTSP can be formulated as a multi-objective model with two objective functions. The first objective

function (1) considers the minimization of the distance traveled by the salesman, while the second

objective function (2) considers the working time of the salesman.

Corresponding Author

Email:

janathakani@gmail.com

Tel.: +91 7373231828

H

h

E

m

a

i

l

:

d

i

ISSN: 0976-3104

mailto:janathakani@gmail.com

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

224

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Subject to j=1,2,3…...N

 j=1,2,3…… N

Let Cij be the cost for traveling from i-th city to j-th city. Tij is the travel cost from i-th city to j-th city and Xij =

1 if the salesman travels from city-i to city-j, otherwise Xij = 0. Both the objectives are optimized to find the

best solutions.

MOTSP can be solved using conventional technique and Evolutionary based technique. [Fig. 1] classifies

the techniques to solve MOTSP. Under conventional technique there are two ways to solve it. 1) Weighted

Sum Technique: This technique converts multiple objectives into single objective using linear combination

of objectives. But it requires a prior knowledge of weightage of each objective of a problem. 2) Constraint

Based Technique: This technique considers only one objective at a time and treats remaining k-1

objectives as constraints. Final answer is computed by taking average of results obtained for all objectives.

Application of this technique demands a prior knowledge of constraints of the problem. Due to these

reasons both are not the best techniques to solve the MOTSP.

Fig. 1: Techniques to solve MOTSP

………

Under evolutionary based technique Multi-objective evolutionary algorithms (MOEAs) are well-suited for

solving several complex multi-objective problems with more objectives. MOEA generates a set of non-

dominated solutions at the end of each run. MOEA generates a set of non-dominated solutions at the end

of each run, which is called Pareto set. The Pareto front contains set of Pareto solutions. Generally, an

external archive is used by MOEAs to maintain a set of non-dominated Pareto set solutions [7] [4]. MOEA

can also be used to solve single objective problems with or without constrained [67]. In addition to that bi-

objective problems are solved using MOEA in [9] [10] [11] [12]. In [13] given the reasons to use MOEAs for

solving multi-objective optimization problems :(i) they are easy to implement, (ii) MOEAs return more than

one optimal solution, (iii) there are less chances of the algorithm to get stuck in local minima, (iv) MOEAs

are flexible and robust, (v) MOEAs do not require any a prior knowledge of the problem.

As in [13] MOEAs can be classified into elitist and non-elitist algorithms. Elitist MOEAs have a mechanism

to preserve good solutions at every generation while non-elitist MOEAs do not have such mechanism.

Therefore, non-elitist algorithms perform worst monotonically than elitist algorithms. In MOEAs, a solution x

is called non-dominated solution if it is better in all objectives than the solution y or solution x is strictly

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

225

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

better than the solution y in at least one objective. The solutions which do not satisfy above two conditions

are called dominated solutions. In MOEAs, at the end of each generation, we have a set of non-dominated

solutions. When we plot these non-dominated solutions on a graph, such graph is called Pareto front and

Solutions on the Pareto front are called Pareto set (solutions). At the termination of MOEA, we have a set

of non-dominated solutions. We obtained optimal Pareto front at the end of termination of MOEA and

solutions on it are called optimal Pareto solutions.

MATERIALS AND METHODS

In this section we present a short overview of state-of-the-art computational algorithms as well as the

working of those algorithms. Under Multiobjective Evolutionary Algorithm (EA) many algorithms are used to

solve MOTSP. The following factors make the difference in solving the problem. 1) Expected fitness of the

solution 2) The uncertainty of the solutions 3) Algorithm convergence speed 4) Usage of external archive.

All these above factors give the different ways of solving the MOTSP. The categories of MOEA given by the

above factors are follows:

State of art Computational Algorithms:

a. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)

b. Multi-objective Genetic Algorithm

c. NSGA II

d. Multi-objective Ant colony optimization

e. Multi-objective Particle swarm optimization

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)

MOEA/D [16] is a general EA framework for dealing with MOPs. Like generic MOEAs, a MOEA/D starts with

an initial population of candidate solutions, in an iteration it generates some new trial solutions and

selects the fittest ones to the next iteration; and it repeats the process until some termination conditions

are satisfied. One of the major advantages of MOEA/D is that it is very easy to design local search operator

within it using well-developed single-objective optimization algorithms. In MOEA/D, an MOTSP is

decomposed into a set of scalar objective sub-problems and a probabilistic model, using both priori and

learned information, is built to guide the search for each sub-problem. By the cooperation of neighbor sub-

problems, MOEA/D could optimize all the sub-problems simultaneously and thus find an approximation to

the original MOTSP in a single run [30] [31] [16]. This idea is realized by solution cooperation in

neighborhood, i.e., the solutions in the same neighborhood are used to generate new trial solutions, and

the new trial solutions only update the old solutions in the same neighborhood. The following two notations

are extremely important in an MOEA/D [17].

Sub-problem: a multi-objective optimization problem is decomposed into a set of scalar objective problems

and each of them is called a sub-problem. Hopefully, the optimal solution of the ith sub-problem gi(π) lies in

the PS (PF) of the original problem.

Neighborhood: The neighborhood Bi = (i1, i2, . . . , iK) of the ith sub-problem contains the indices of similar

sub-problems, i.e., the ijth (j = 1, . . . , K) sub-problems are the most similar ones to the ith sub-problem.

Sub-problem definition: In [16] Tchebycheff approach is used to define the sub-problems as given follows:

Where λi = (λi1, . . . , λim)T is a weight vector with the ith sub-problem, z∗ = (z∗1 , . . . , z∗m)T is a reference

point. Reference point weakly dominates all the other solutions in the population. It is clear that all the

sub-problems are with the same form and can only be differentiated by the weight vectors. If two vectors

are close to each other, the corresponding sub-problems should be similar to each other and their optima

should also be close in both the decision and objective spaces in most cases. By using the weight vectors,

the neighborhood could be determined before the algorithm execution. A Probabilistic model 𝑃𝑖 stores

information extracted from the population for the 𝑖𝑡ℎ sub-problem and mating process will be continued.

MOEA/D framework follows.

MOEA/D Algorithm framework

The following steps are followed in the MOEA/D algorithm framework [18] [16]. First MOEA/D converts an

MOTSP into N sub-problems and randomly generates a solution for each sub-problem. Then initialize the

reference point z∗ followed by Initialize the weight vectors, neighborhood and probability matrix for each

sub-problem. For each sub-problem i = 1,…, N, do Sample a new solution be a unvisited city by randomly

selecting according to the probability and repeat the process until the whole tour is constructed. Then do

update of reference point, Update solutions Set and Update probability model. If the stopping conditions

are satisfied, then stop; otherwise do the process again. Algorithm 1 explains the MOEA/D working

process.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

226

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

-- ---

Algorithm 1: MOEA/D

-- -- -------

Input: N: number of SOSPs (scalar optimization sub-problems) ; W: number of the neighbors for each

SOSP; ⅄1, . . ., ⅄N: uniformly distributed weight vectors; pc: crossover rate; pm: mutation rate.

Initialization

1. Set EP = Ø (External Population)

2. For each _i, calculate the W closest weight vectors, ⅄i(1), . . .,⅄i(W), by Euclidean distance and set ϕ(i) =

{i(1), . . ., i(W)}.

3. Generate an initial population x1,… xN and evaluate fu(xj)for each individual

4. Initialize z = (z1,…, zm)

Repeat

5. For i = 1 to N do

Reproduction:

6. Generate a new solution y by two individuals xu and xl using crossover and mutation operators, where u,

l ∈ ϕ(i)

Improvement:

7. Improve y by using a problem-specific improvement repair operator, which is optional.

Update of z:

8. For j = 1,…, m, if fj(y) < zj, set zj= fj(y)

9. Update of neighboring solutions

Update of EP:

10. Remove those solutions dominated by y from EP and add y to EP if it is not dominated by any member

in EP

Termination:

11. Until stopping criteria are satisfied, output EP

-- ---

In [19], Algorithm decomposes the population into „s‟ scalar optimization sub-problems according to the

Tchebycheff approach. It follows a two-chromosome representation for individual‟s representation. The

first chromosome locates the cities while the second chromosome indicates which vehicle is to be

assigned to visit the city specified in the first chromosome, which improves the performance of the

algorithm. A chemical reaction optimization based decomposition method is introduced in [6]. It follows

the same steps as MOEA/D algorithm framework; in addition to that a chemical collision stage is followed

after initialization stage. A Parallel Procedure for Dynamic Multi-objective TSP [21] follows the

decomposition method to decompose the problems and follow the parallel execution of the sub-problems

for time efficient process. In [21] objectives are represented in the form of matrix, in which we can

increase the number of objectives for optimization. But the number of objectives affects directly the

execution time. In [31] different approaches in MOEA/D are listed to solve the MOTSP.

Multi-objective Genetic Algorithm

Multi Objective Genetic Algorithm (MOGA) was given by Fonseca et al [4] [13]. It is an extension of single

objective optimization algorithm. The rank to an individual is assigned based on the number of solutions in

the population by which it is dominated. GA has two main parts, an evolution function and a fitness

function. In the case of the MOTSP, the parameters produced by the evolution function might be the order

of the nodes through which the path will go. The fitness function in that same case would return the total

length of the path found. The GA would then compare fitness values for each input string and assign

priority to the ones that returns lower path lengths and other objectives. Based on the objective values the

best solutions will be produced. The framework of the MOEA was explained in [14] [24]. By following it

MOGA steps are explained below.

Framework of MOGA

MOGA starts with initial population and assign the fitness value to the individuals and apply the Evolution

operator on the individuals. Do this process until satisfaction criteria met and finally it will produce the best

path for MOTSP. Algorithm 2 explains the MOGA working process.

-- -- -----

Algorithm 2: MOGA

--- --

Input: Populationsize, Problemsize, Pcrossover, Pmutation

Output: Sbest

Population <- InitializePopulation (Populationsize, Problemsize)

EvaluatePopulation (Population)

Sbest <- GetBestSolution (Population)

While (~StopCondition())

 Parents <- SelectParents (Population, Populationsize)

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

227

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

 Children <- Ø

 For (Parent1, Parent2 € Parents)

 Child1, Child2 <- Crossover (Parent1, Parent2, Pcrossover)

 Children <- Mutate (Child1, Pmutation)

Children <- Mutate (Child2, Pmutation)

 End

 EvaluatePopulation (Children)

 Sbest <- GetBestSolution (Children)

 Population <- Replace (Population, Children)

End

Return (Sbest)

-- ---

GA can solve problems with non-parametrical problems, multi-dimensional, non-continuous and non-

differential optimization problems. But Genetic Algorithm has weaker local search ability [14]. During the

later period of Hierarchical Genetic Algorithm, the fitness converges, and less superior individuals are

produced. However, Hybrid Simulated Annealing Algorithm can make it jump out of the erroneous zone of

local optimum. Due to the compatibility of Genetic Algorithm, it is feasible to combine Simulated Annealing

Algorithm and Hierarchical Genetic Algorithm to form the modified Simulated Annealing Genetic Algorithm

[8]. The modified Simulated Annealing Genetic Algorithm can sooner achieve a better global optimum

solution. The reasons are: the suffix structure design of chromosome reduced the space of the solution,

the self-adaptive genetic operator and double crossover and mutation improved „premature convergence

problem‟; the introduction of Simulated Annealing Algorithm stretched the fitness and enhanced the local

search ability.

Multiple traveling salesman problem was solved using GA in [5]. Two types of GAs were developed in it.

The first one is a multi-objective GA that uses the sum of the route distance of each salesman to estimate

the overall distance, and the standard deviation of the routes to estimate the balance. The second is a

mono-objective GA with a fitness function that combines these two objectives by the use of a parameter.

GA is modified into discrete GA and combined with fuzzy technique [34] in order to solve multi-objective

problem. The proposed algorithm is able to find better result in shorter computational time. Xiaomei Sun

[69] solved the Intelligent Transportation Systems (ITS) using improved Genetic Algorithm. It divides the

population into subgroups and do the selection operation and recombine the subgroups followed by

crossover and mutation operation. In [19] MOGA is used to solve vehicle routing problem.

Non-dominated Sorting Genetic Algorithm-II (NSGAII)

Non-dominated Sorting Genetic Algorithm-II (NSGAII) was introduced by Deb et al. [13]. It is an improved

version of NSGA. The rank of every solution is computed based on how many number of solutions it

dominates. In order to maintain the diversity of a population the algorithm finds average distance of two

neighbors on either side of a solution along each of the objectives. The calculated distance is called

crowding distance of that solution. For generating mating pool for next generation, selection of solutions is

performed based on rank and crowding distance. The concept of dominance is used to find the best

individual. It follows:

Concept of dominance
The concept of dominance is applied to multi-objective problems to compare two solution candidates 𝑋1,

𝑋2, and determine if a solution dominates the other one. In particular, the dominance is a method for the

classification of the solutions which ensures the selection of the best solution in the resulting population

𝑅𝑡.

Definition [6]: Given two solutions 𝑋1 and 𝑋2, solution 𝑋1 dominates solution 𝑋2, if the following

conditions are satisfied:

1. Solution 𝑋1 is not worse than 𝑋2 for all the objectives;

2. Solution 𝑋1 is strictly better than 𝑋2 for at least one objective.

Using these dominance concept individuals are ranked. When two solutions have the same rank then a

solution that has higher crowding distance is selected for mating. The algorithm selects the solutions for

the next generation based on following policy: select best solutions out of union of the best parents and

best offspring (obtained after application of genetic operators). The following criteria are used for selection

of the best solutions from the union: fitness and spread. As the algorithm selects the best solutions from

the union, it does not require extra memory to preserve elite solutions. The NSGA II algorithm framework

follows [27] [28] [29].

NSGA II Algorithm Framework

It starts with the initial population and assigns the rank for each individual. Then crowding distance is

calculated for each individual. Based on the rank and crowding distance of the individuals best solutions

are selected for crossover and mutation operations. Until the stopping criteria met the steps are repeated.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

228

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Algorithm 3: NSGA II

-- ---

Input: Population size , problemSize, P crossover , P mutation

Output: children

Population <- InitializePopulation (PopulationSize , ProblemSize)

EvaluateAgainstObjectiveFunctions(Population)

FastNondominatedSort(Poplation)

Selected <- SelectParentsByRank(Population, Population size)

Children <- CrossoveAndMutation (Selected, P crossover, P mutation)

While (~ StopCondition())

 EvaluateAgainstObjectiveFunctions(Children)

 Union <- Merge (Population, Children)

 Fronts <- FastNondominatedSort (Union)

 Parents <- Ø

Front L<- Ø

For (Front i € Fronts)

CrowdingDistanceAssignment (Front i)

If (Size (Parents) + Size (Fronts i) > Population size)

FrontL <- i

Break()

 Else

Parents <- Merge (Parents, Front i)

 End

End

If (Size (Parents) + Size (Fronts i) < Population size)

Front L <- SortByRankAndDistance (Front L)

 For (P1 to PPopulation size – SizeFront L)

 Parents <- Pi

End

End

Selected <- SelectPrentByRankAndDistance (Parents, Population Size)

Population <- Children

Children <- CrossoverAndMutation(Selected, Pcrossover, Pmutation

End

Return (Children)

-- ---

In [6], Author proposed a methodology based on the non-dominated sorting genetic algorithm NSGA-II to

solve the Multiple TSP. It follows the same algorithm framework given above but the number of salesman

will be more than one. An improved NSGA II is implemented in [40]. Specifically, a layer strategy according

to need is proposed to avoid generating unnecessary non-dominated fronts. The arena‟s principle is also

adopted to construct non-dominated set, so as to reduce the count of dominance comparison. In addition,

an order crossover like operator and an inversion mutation operator are adopted for MOTSP.

Non-dominated sorting differential evolution algorithm for the minimization of route based fuel

consumption multi-objective vehicle routing problems is introduced in [31] [29]. It uses the hybrid version

of NSGA II to solve the routing problem by optimizing the fuel consumption. MOTSP is solved using two

algorithms based on Differential Evolution, and the third one is based on NSGA II. The algorithms solve 2

to 5 objective functions TSP in [27] [28]. Vehicle routing problem with uncertain travel cost is solved using

NSGA II in [5] [48].

Multi-objective Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a population-based meta-heuristic inspired by the pheromone trail laying

and following behavior of some real ant species. ACO was originally designed for solving single-objective

combinatorial optimization, and later it has proven to be one of the most successful algorithms for

modeling discrete optimization problems. Due to notable results on these applications, ACO algorithms

were soon extended to tackle problems with more than one objective (MOPs), called multi-objective ACO

(MOACO), most of these algorithms have different design choices and focus in terms of Pareto optimally,

that is, they do not make a priori assumptions about the decisions maker‟s preferences. So it gives the

best result in real time problem solving.

ACO implementation mainly consists of two stages: tour construction and pheromone update. The process

of tour construction and pheromone update is applied iteratively until a termination condition is met (such

as a set number of iterations). Both the tour construction and pheromone update stages can be performed

independently [17]. The main idea in this algorithm is that the behavior of each individual ant produces an

emergent behavior in the colony. When applied to the MOTSP, individual agents (“ants”) traverse the

graph of the problem, leaving a chemical (pheromone) trail behind them. At each node it comes to, an ant

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

229

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

must decide which edge to take to the next node. This is done by checking each edge for pheromone

concentration and applying a probability function to the decision of which edge to choose. The higher the

concentration of pheromone, the more likely the ant is to choose that edge. Also, to avoid stagnation in

travel, the pheromone is given an evaporation rate so that at each iteration the pheromone loses a certain

percentage on each edge. The MOACO algorithm framework is explains the above given steps to solve

MOTSP.

MOACO Algorithm Framework

The algorithm maintains: (I) τ 1, ..., τK, where τ j is the current pheromone matrix for group j, storing its

learned knowledge about the sub-region of PF that it aims at approximating; (II) η1, ..., ηN, where ηi is the

heuristic information matrix for sub-problem i, which is predetermined before the construction solution

starts; (III) EP, which is the external archive containing all the non-dominated solutions found so far.

Algorithm 4 explains the working process of MOACO.

-- ---

Algorithm 4: MOACO

Define Original pheromone

 For iteration=1 to i= (1,2,3…n)

 For ant=1 to i = (1,2,3…n)

 Random start node

 Do while node < i

 Select next node

 Loop

 Next End Loop ant

 Calculate Multi – objective function

 For ant=1 to i=(1,2,3…n)

 Do while node < i

 Update pheromone

 Loop

 Checking pheromone upper and pheromone lower

 Next End Loop ant

 Next End loop iteration

-- ---

All the problems using MOACO follow the above MOACO algorithm framework. MOACO can be combined

with Genetic Algorithm and MOEA/D to give better performance. In [42], a hybridized algorithmic approach

to solve 4- dimensional Travelling Salesman Problem is introduced. The algorithm is a hybridization of

rough set based ant colony optimization (rACO) with genetic algorithm (GA). In this the initial solutions are

produced by ACO which act as a selection operation of GA and then GA is developed with a virgin extended

rough set based selection (7-point scale), comparison crossover and generation dependent mutation. The

development of rACO-GA is in general form and it can be applied in other discrete problems such as

network optimization, graph theory, solid transportation problems, vehicle routing, covering salesman

problem, VLSI chip design, industrial information integration, information management, supply chain,

airline industry, etc. ACO is combined with PSO and used to solve TSP which gives good result [2].

In [30] [24] ACO is implemented to solve multi objective problems combined with Genetic Algorithm.

Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multi-objective optimization problem

into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving

one sub-problem. All the ants are divided into a few groups, and each ant has several neighboring ants. An

ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During

the search, each ant also records the best solution found so far for its sub-problem. To construct a new

solution, an ant combines information from its group‟s pheromone matrix, its own heuristic information

matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors,

and updates its current solution if it has found a better one in terms of its own objective. ACO is used to

solve Multi-objective Bus Route Planning.

Multi-objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization (PSO) was given by (Kennedy and Eberhart 1995) [15]. This method is

inspired by the social behavior of animals living swarm. Initially, they tried to simulate the ability of birds to

fly synchronously and their ability to change direction suddenly while remaining optimal training. The

particles are individuals and they move into hyperspace research based on limited information:

1. Each particle has a memory which enables to store the best point at which it has already passed and it

tends to return to that point.

2. Each particle is informed of the best known point in its neighborhood and it will tend to go to that point.

The movement of a particle tends to follow her go her own way or particle tends to return to the best site in

which it has already passed or the Particle tends to move toward the best ever achieved by its neighbors.

The position of each particle is modified according to its own experience and that of its neighbors. To make

the PSO capable to handle MOP the following modifications are done.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

230

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

General modifications on PSO to handle MOPs are: (1) External Archive Maintenance (2) Select Global

Leaders (3) Update Personal Best (4) Mutation Operator (Perturbation). PSO produce a single solution and

the solution of a problem with multiple objectives is not a single solution (as in global optimization).

Instead, in the multi-objective optimization, we aim to find different solutions (called Pareto Optimal Set)

using MOPSO. By following these steps MOPSO framework is explained below.

MOPSO framework

Initialize swarm population and velocity. Do the Fitness evaluation and Pareto dominance for ranking

particles (solutions). Based on the ranking of individuals Personal Best (Pbest) swarm population is stored

on to the memory and non-dominated solutions are stored in External Archive. Particles Select global

leaders from External Archive and compute PSO equation. Using fitness rank individuals are mutated. The

new Personal Best are updated and maintained on external archive. If satisfaction criteria met then stop

the process else continue [15]. Algorithm 5 explains the working of MOPSO.

-- ---

Algorithm 5: MOPSO

-- ---

Begin

Initialize Swarm

Initialize leaders in an external Archive

Quality (Leaders)

g=0;

While g < gmax

 For each Particle

 Select leader

 Update Position

 Mutation

Evaluation

Update pbest

 End For

Update leaders in the external Archive

Quality (leaders)

g++

End while

Report results in the external Archive

End

-- ---

In [15] MOTSP is solved using MOPSO. In multi-objective Particle Swarm Optimization (MOPSO), a ranking

operator is applied to the population in a predefined iteration to build an initial archive using €-dominance

to select the best solutions for mating. It uses the advantage of Pareto approach which is based on the

concept of external archive with the rapidity of convergence of PSO as to minimize the total distance

traveled by a particle and minimize the total time.

RESULTS

This section studies the effectiveness of the listed five MOEA algorithms. Then, we evaluate the overall

performance of MOEA algorithms by comparing its Performance measures. The associated parameters are

defined below.

Performance measures

To evaluate the performance of the MOEA algorithms, we employ the following widely recognized

performance measuring metrics. Let PFref be a reference set of solutions well approximating the true PF,

and PFknown be the set of non-dominated solutions obtained by an algorithm.

Approximation set [34]: An approximation set is defined by Zitzler et al. as follows: let A be a set of

objective vectors. A is called an approximation set if any element of A does not dominate or is not equal to

any other objective vector in A. The set of all approximation sets is denoted as Z. The result of solving a

real-world problem usually is an approximation set A and not the Pareto optimal front PF*.

Cardinality metrics: the cardinality of A refers to the number of solutions that exists in A. Intuitively; a larger

number of solutions are preferred.

Accuracy metrics: this aspect refers directly to the convergence of A. In other words, it indicates how

distant A is from the theoretical Pareto optimal front PF*. Notice that when the Pareto optimal front is

unknown, a reference set R is considered instead.

Diversity metrics: distribution and spread are two very closely related facets. The distribution refers to the

relative distance among solutions in A, while the spread refers to the range of values covered by the

solutions in A. The spread is also known as ”the extent” of an approximation set.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

231

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Maximum spread (MS) [34]: MS reflects how well the true PF is covered by the points in PFknown through

the hyperboxes formed by the extreme function values observed in PFref and PFknown.

Hypervolume (HV): HV also known as S metric, hyper-area is an unary metric that measures the size of the

objective space covered by an approximation set. A reference point must be used to calculate the

mentioned covered space. HV considers all three aspects: accuracy, diversity and cardinality.

Inverted generational distance (IGD) [34]: IGD is defined as the average distance from each point v in PFref

to its nearest counter-part in PFknown, as follows:

Where d(v, PFknown) is the Euclidean distance (in the objective space)between solution v in PFref and its

nearest solution in PFknown and |PFref| is the number of solutions in PFref. IGD measures the convergence

and diversity of an obtained non-dominated solution set. This metric is commonly used and a lower IGD

indicates a better overall performance of an algorithm.

Average Computational Time (ACT): ACT is the average running time consumed by an algorithm over 30

runs. This metric is a direct indicator of the computational complexity of an algorithm.

Result comparison

IGD reflects the overall performance of an algorithm regarding the quality of the obtained PFknown. So we

compared all the listed MOEA algorithms using IGD. We computed the IGD of the algorithms for 10 runs

with randomly generated cities. The IGD of MOEA/D, NSGA II, MOGA, MOACO and MOPSO algorithms are

shown in the [Table 1]. RGC represents Randomly Generated Cities.

Table 1: Results of IGD of the MOEA algorithms

RGC/
Algori
thms

MOEA/D NSGA II MOGA MOACO MOPSO

1 0.00 0.00 0.89 1.50 2.07

2 0.00 0.29 1.33 1.72 2.39

3 0.00 0.50 1.42 2.06 2.46

4 0.54 1.08 1.68 2.38 2.48

5 0.77 1.22 2.01 2.26 2.56

6 0.80 1.50 2.10 2.53 2.63

7 0.76 1.36 2.34 2.56 2.96

8 0.62 1.25 2.56 3.06 3.76

9 0.17 1.46 2.60 3.16 3.96

10 0.20 1.37 2.50 3.28 4.45

As mentioned in the IGD definition, lower IGD indicates a better overall performance of an algorithm. From

the [Table 1], it is clear that MOEA/D is having the lower IGD in more number of runs compared to other

algorithms, then followed by NSGA II, MOGA, MOACO and MOPSO algorithms. The below [Fig. 2] shows the

result of IGD metric performance of the five algorithms. From the [Fig. 2] it is observed that when the

number of cities is increasing, the IGD of NSGA, MOGA, MOACO and MOPAS algorithms are also increasing

and the starting value of IGD is also very high. But in MOEA/D the IGD value is zero and when the number

of cites is increasing value of IGD is going in a constant way. So from the definition of IGD, it is known that

MOEA/D is having good diversity and convergence. All the other four algorithms are lacking in their

performance with respect to IGD. So with respect to IGD, MOEA/D is giving best performance.

Fig. 2: IGD of MOEA algorithms.

………...............
The Average Computational Time (ACT) is also calculated to find the best algorithm among the five to solve

MOTSP with respect to time complexity. The ACT of the MOEA are listed in the below [Table 2]. ACT is

measure in seconds.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

232

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

Table 2: Average Computational time (ACT) (Sec) of MOEA Algorithms

RGC/Algori
thm

variants

MOEA/D NSGA II MOGA MOACO MOPSO

1 5.63 15.31 18.80 23.75 26.83

2 7.05 23.53 25.45 35.68 26.04

3 17.09 61.52 50.28 56.57 27.41

4 34.23 60.73 102.28 134.85 179.02

5 34.24 93.42 105.78 170.47 228.61

6 38.83 120.38 170.03 230.78 240.99

7 41.44 196.29 240.09 399.76 503.51

8 89.21 266.27 450.34 630.54 782.52

9 134.92 747.23 876.22 934.23 1027.34

10 484.71 958.91 1021.34 1194.25 1324.86

For the [Table 2], MOEA/D is having the minimum computational time. NSGA II algorithm took almost three

times more ACT than MOEA/D. Other algorithms are giving even higher time complexity. The ACT result of

the algorithms is shown in the [Fig. 3]. When the number of cities is increasing the ACT also increases.

MOEA/D has the lower computational time compared to other algorithms. So with respect to ACT also,

MOEA/D is the best algorithm to solve MOTSP.

From the result analysis, MOEA/D is the best algorithm to solve MOTSP in all aspects. NSGA II is also giving

good performance only but it is good when the number of objectives considered is only two [11] [13].

MOGA is giving good performance for stable environment but not for dynamic environment and the local

search ability is also not good [35] [13].

Fig. 3: ACT (sec) of MOEA Algorithms.

………

MOACO is performing well in dynamic environment but in ACO starting and destination nodes should be

defined at earlier. MOPSO is good in global search but the convergence and local search are not at the

expected level to solve MOTSP. MOEA/D is giving better performance in all aspect compared to other

algorithms which is proved from the IGD and ACT analyses of the algorithms [18] [11] [17] [16].

CONCLUSION

In this paper the problem of TSP is explained in order to understand the concept and need of MOTSP

which optimizes more objectives to find the best solutions. There are many methods to solve the MOTSP.

Among those Multi-Objective Evolutionary Algorithms are the best methods to solve it efficiently. By

evolving a population of solutions, multi-objective evolutionary algorithms (MOEAs) are able to approximate

the Pareto optimal set in a single run. It results in nearest optimal solution within a reasonable time by

optimizing many objectives simultaneously. The MOEA algorithms used to solve MOTSP are explained with

its algorithm framework in section II. Each and every algorithm is best suited in some situation or

environment to solve it. Among listed MOEA algorithms MOEA/D is giving the best solution for the MOTSP.

CONFLICT OF INTEREST
There is no conflict of interest.

SPECIAL ISSUE: Computer Science

www.iioab.org | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 |

233

C
O

M
P

U
TE

R
 S

C
IE

N
C

E

ACKNOWLEDGEMENTS
This work is a part of the Research Projects sponsored by Visvesvaraya Ph.D. Scheme for Electronics & IT, Ministry of Electronics &

Information Technology, India, and Reference No: PHD-MLA-4(44)/2015-16, dated August 2015. The authors would like to express

their thanks for the financial supports offered by the Sponsored Agency.

FINANCIAL DISCLOSURE
None

REFERENCES

[1] SaraeI M, AnaloueI R, MansourI P. [2015] Solving of

Travelling Salesman Problem using Firefly Algorithm with

Greedy Approach, (June).

[2] Khanra A, Maiti MK, Maiti M. [2015] Profit maximization

of TSP through a hybrid algorithm. Computers and

Industrial Engineering, 88:229–236.

https://doi.org/10.1016/j.cie.2015.06.018

[3] Fdhila R. [2014] Distributed MOPSO with dynamic Pareto

Front driven population analysis for TSP problem, 294–

299.

[4] Changdar C, Mahapatra GS, Kumar Pal. [2014] An

efficient genetic algorithm for multi-objective solid

travelling salesman problem under fuzziness. Swarm and

Evolutionary Computation, 15:27–37.

https://doi.org/10.1016/j.swevo.2013.11.001

[5] Lopes CR. [2015] Using Genetic Algorithms to minimize

the distance and balance the routes for the multiple

Traveling Salesman Problem, 3171–3178.

[6] Ruben Ivan Bolapos, Mauricio Granada Echeverry, John

Willmer Escobar. [2015] A multiobjective non-dominated

sorting genetic algorithm [NSGA-II] for the Multiple

Traveling Salesman Problem, Decision Science Letters, 4:

559–568. https://doi.org/10.5267/j.dsl.2015.5.003

[7] Segura C, Coello CA, Miranda G, Leon C. [2017] Using

multi-objective evolutionary algorithms for single-objective

constrained and unconstrained optimization. Annals of

Operations Research, 240(1): 217–250.

https://doi.org/10.1007/s10479-015-2017-z

[8] Xu M, Li S, Guo J. [2017] Optimization of Multiple

Traveling Salesman Problem Based on Simulated

Annealing Genetic Algorithm, 25.

[9] Sidoti D, Avvari GV, Mishra M, Zhang L, Nadella BK, Peak

JE, Pattipati KR. [2016] A Multiobjective Path-Planning

Algorithm With Time Windows for Asset Routing in a

Dynamic Weather-Impacted Environment. IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, 1–16.

https://doi.org/10.1109/TSMC.2016.2573271

[10] Bazgan C, Gourvès L, Monnot J, Pascual F. [2013] Single

approximation for the biobjective Max TSP. Theoretical

Computer Science, 478, 41–50.

https://doi.org/10.1016/j.tcs.2013.01.021

[11] Köksalan M, Tezcane Öztürk D. [2017] An evolutionary

approach to generalized biobjective traveling salesperson

problem. Computers and Operations Research, 79: 304–

313. https://doi.org/10.1016/j.cor.2016.04.027

[12] Li M, Yang S, Liu X. [2015] Bi-goal evolution for many-

objective optimization problems. Artificial Intelligence,

228: 45–65.

https://doi.org/10.1016/j.artint.2015.06.007

[13] Rahimi M, Baboli A. [2014] A bi-objective inventory

routing problem by considering customer satisfaction

level in context of perishable product.

[14] Vachhani VL, Prajapati HB. [2015] Survey of Multi

Objective Evolutionary Algorithms.

[15] Jiang J, Gee SB, Arokiasami, WA, Tan KC. [2014] Solving

Vehicle Routing Problem with Stochastic Demand Using

Multi-objective Evolutionary Algorithm, 1.

https://doi.org/10.1109/ISCMI.2014.18

[16] Zhou A, Gao F, Zhang G. [2013] A decomposition based

estimation of distribution algorithm for multiobjective

traveling salesman problems. Computers and

Mathematics with Applications, 66(10):1857–1868.

https://doi.org/10.1016/j.camwa.2013.05.031

[17] Ke L, Zhang Q, Battiti R. [2013] MOEA/D-ACO: A

multobjective evolutionary algorithm using decomposition

and AntColony. IEEE Transactions on Cybernetics, 43(6):

1845–1859.

https://doi.org/10.1109/TSMCB.2012.2231860

[18] Ke L, Zhang Q, Battiti R. [2014] Hybridization of

decomposition and local search for multiobjective

optimization. IEEE Transactions on Cybernetics, 44(10):

1808–1820.

https://doi.org/10.1109/TCYB.2013.2295886

[19] Souza MZ De, Trinidad A Pozo R. [2014] A GPU

Implementation of MOEA / D-ACO for the Multiobjective

Traveling Salesman Problem, 6–11.

https://doi.org/10.1109/BRACIS.2014.65

[20] GAO F, Zhou A, Zhang G. [2012] An Estimation of

Distribution Algorithm based on Decomposition for the

Multiobjective TSP, (Icnc), 817–821.

[21] Shim VA. (2012). A Hybrid Estimation of Distribution

Algorithm for Solving the Multi-objective Multiple Traveling

Salesman Problem, 10–15.

[22] Li W. [2012] A Parallel Procedure for Dynamic Multi-

objective TSP. https://doi.org/10.1109/ISPA.2012.10

[23] Xing H, Wang Z, Li T, Li H, Qu R. [2017] An improved

MOEA/D algorithm for multi-objective multicast routing

with network coding. Applied Soft Computing Journal,

59:88–103.

https://doi.org/10.1016/j.asoc.2017.05.033

[24] Kuo RJ. [2017] A Fuzzy Multi-Objective Vehicle Routing

Problem for Perishable Products Using Gradient Evolution

Algorithm.

[25] Psychas ID, Delimpasi E, Marinakis Y. [2015] Hybrid

evolutionary algorithms for the Multiobjective Traveling

Salesman Problem. Expert Systems with Applications,

42(22):8956–8970.

https://doi.org/10.1016/j.eswa.2015.07.051

[26] Psychas ID, Delimpasi E, Marinakis Y. [2015] Hybrid

evolutionary algorithms for the Multiobjective Traveling

Salesman Problem. Expert Systems with Applications,

42(22):8956–8970.

https://doi.org/10.1016/j.eswa.2015.07.051

[27] Psychas ID, Marinaki M, Marinakis Y, Migdalas A. [2016]

Non-dominated sorting differential evolution algorithm for

the minimization of route based fuel consumption

multiobjective vehicle routing problems. Energy Systems.

https://doi.org/10.1007/s12667-016-0209-5

[28] Luo Y, Liu M, Hao Z, Liu D. [2014] An Improved NSGA-II

Algorithm for Multi-objective Traveling Salesman Problem,

12(6):4413–4418.

https://doi.org/10.11591/telkomnika.v12i6.5476

[29] GarciaNájera A, Bullinaria JA, Gutiérrez-Andrade MA.

[2015] An evolutionary approach for multi-objective

vehicle routing problems with backhauls. Computers &

Industrial Engineering, 81, 90–108.

https://doi.org/10.1016/j.cie.2014.12.029

[30] Bederina H. [n.d.] Evolutionary Multi-Objective

Optimization Approach for the Vehicle Routing Problem

with Uncertain Travel Time.

[31] Mathew N, Smith SL, Waslander SL. [2015] Planning

Paths for Package Delivery in Heterogeneous Multirobot

Teams. IEEE Transactions on Automation Science and

Engineering, 12(4): 1298–1308.

https://doi.org/10.1109/TASE.2015.2461213

[32] Maity S, Roy A, Maiti M. [2017] Journal of Industrial

Information Integration An intelligent hybrid algorithm for

4- dimensional TSP. Journal of Industrial Information

Integration, 5:39–50.

https://doi.org/10.1016/j.jii.2017.02.001

[33] Pierre DM, Zakaria N. [2017] Stochastic partially

optimized cyclic shift crossover for multi-objective genetic

algorithms for the vehicle routing problem with time-

windows. Applied Soft Computing Journal, 52:863–876.

https://doi.org/10.1016/j.asoc.2016.09.039

[34] Riquelme N, Von LC. [2015] Performance metrics in

multi-objective optimization, 1.

https://doi.org/10.1109/TSMC.2016.2573271
https://doi.org/10.1016/j.asoc.2017.05.033

