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ABSTRACT  
Traveling Travelling Salesman Problem (TSP) is a challenging problem in combinatorial optimization. The important of this problem is due to 

the fact that it is used in many fields such as transportation, logistics, semiconductor industry, problem of routing, scan chain optimization 

and drilling problem in integrated orbit test, production and many others scientific and industrial fields. In this paper we consider the multi-

objective TSP (MOTSP) which is an extended instance of traveling salesman problem (TSP). Since TSP is a NP- hard problem MOTSP is also 

NP-hard problem. In MOTSP simultaneous optimization of more than one objective functions is required. TSP considers and optimizes one 

objective function to find the best solution. Instead in MOTSP many objectives are considered and optimized to find the best solutions.  Many 

algorithms are used to solve MOTSP. Some algorithms give optimal solution and some give the nearest optimal solution. By evolving a 

population of solutions, multi-objective evolutionary algorithms (MOEAs) are able to approximate the Pareto optimal set in a single run. It 

results in nearest optimal solution within a reasonable amount of time by optimizing many objectives. In this survey, we review the current 

state-of-the-art computational algorithms used to solve the MOTSP. 

 

INTRODUCTION  
  

The Travelling Salesman Problem (TSP) is an optimization problem used to find the shortest path to travel 

through the given number of cities. Travelling salesman problem states that given a number of cities N and 

the distance or time to travel between the cities, the traveler has to travel through all the given cities exactly 

once and return to the same city from where he started and also the cost of the path is minimized. This path 

is called as the tour and the path length or travel time is the cost of the path [1] [2]. The TSP mathematical 

model follows [3] [2]: 

 
 

Subject to        j=1,2,3…...N  

 

  j=1,2,3…… N 

 

Let Cij be the cost for traveling from i-th city to j-th city. Where Xij = 1 if the salesman travels from city-i to 

city-j, otherwise Xij = 0. In the mathematical model it is shown that the distance  is considered for finding 

the best solution.  

 

The travelling salesman problem can be classified as symmetric Travelling Salesman Problem (STSP), 

Asymmetric Travelling Salesman Problem (ATSP), and Multi Travelling Salesman Problem (MTSP) [9] [1]. In 

travelling salesman problem with increasing the number of cities the existing solutions don‟t provide 

optimal solution at the appropriate time. Moreover the solution found by optimizing the distance to travel 

to the destination may not always give the best solutions. For the solution optimization more than one 

objective needs to be considered.  When more objectives functions are considered to optimize the 

solutions then it will give the better solutions compared to solutions given by single objective function [5]. 

This gives the need for MOTSP.  MOTSP considers more than one objective functions to optimize the 

solutions. In MOTSP, the aim is to simultaneously optimize several conflicting objectives, such as shortest 

travelling distance, minimum time, minimum cost, and lowest risk. Under multi-objective framework no 

single point is considered as an optimal solution, because an improvement in one objective will cause at 

least another objective not being able to be optimized. Therefore, the optimal solution can only be a set of 

non-dominated and trade-off solutions. The [6] gives the mathematical model of MOTSP by considering 

two objectives for optimization.  

 

The MOTSP can be formulated as a multi-objective model with two objective functions. The first objective 

function (1) considers the minimization of the distance traveled by the salesman, while the second 

objective function (2) considers the working time of the salesman. 
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Subject to        j=1,2,3…...N  

 

  j=1,2,3…… N 

 

Let Cij be the cost for traveling from i-th city to j-th city. Tij is the travel cost from i-th city to j-th city and Xij = 

1 if the salesman travels from city-i to city-j, otherwise Xij = 0.  Both the objectives are optimized to find the 

best solutions.  

 

MOTSP can be solved using conventional technique and Evolutionary based technique. [Fig. 1] classifies 

the techniques to solve MOTSP. Under conventional technique there are two ways to solve it. 1) Weighted 

Sum Technique: This technique converts multiple objectives into single objective using linear combination 

of objectives. But it requires a prior knowledge of weightage of each objective of a problem. 2) Constraint 

Based Technique: This technique considers only one objective at a time and treats remaining k-1 

objectives as constraints. Final answer is computed by taking average of results obtained for all objectives. 

Application of this technique demands a prior knowledge of constraints of the problem. Due to these 

reasons both are not the best techniques to solve the MOTSP. 

 

 
 
Fig. 1:  Techniques to solve MOTSP  

…………………………………………………………………………………………………………………………… 

 
Under evolutionary based technique Multi-objective evolutionary algorithms (MOEAs) are well-suited for 

solving several complex multi-objective problems with more objectives. MOEA generates a set of non-

dominated solutions at the end of each run. MOEA generates a set of non-dominated solutions at the end 

of each run, which is called Pareto set. The Pareto front contains set of Pareto solutions. Generally, an 

external archive is used by MOEAs to maintain a set of non-dominated Pareto set solutions [7] [4]. MOEA 

can also be used to solve single objective problems with or without constrained [67]. In addition to that bi-

objective problems are solved using MOEA in [9] [10] [11] [12]. In [13] given the reasons to use MOEAs for 

solving multi-objective optimization problems :(i) they are easy to implement, (ii) MOEAs return more than 

one optimal solution, (iii) there are less chances of the algorithm to get stuck in local minima, (iv) MOEAs 

are flexible and robust, (v) MOEAs do not require any a prior knowledge of the problem. 

 

As in [13] MOEAs can be classified into elitist and non-elitist algorithms. Elitist MOEAs have a mechanism 

to preserve good solutions at every generation while non-elitist MOEAs do not have such mechanism. 

Therefore, non-elitist algorithms perform worst monotonically than elitist algorithms. In MOEAs, a solution x 

is called non-dominated solution if it is better in all objectives than the solution y or solution x is strictly 
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better than the solution y in at least one objective. The solutions which do not satisfy above two conditions 

are called dominated solutions. In MOEAs, at the end of each generation, we have a set of non-dominated 

solutions. When we plot these non-dominated solutions on a graph, such graph is called Pareto front and 

Solutions on the Pareto front are called Pareto set (solutions). At the termination of MOEA, we have a set 

of non-dominated solutions. We obtained optimal Pareto front at the end of termination of MOEA and 

solutions on it are called optimal Pareto solutions.  

 

MATERIALS AND METHODS  

 
In this section we present a short overview of state-of-the-art computational algorithms as well as the 

working of those algorithms. Under Multiobjective Evolutionary Algorithm (EA) many algorithms are used to 

solve MOTSP. The following factors make the difference in solving the problem. 1) Expected fitness of the 

solution 2) The uncertainty of the solutions 3) Algorithm convergence speed 4) Usage of external archive. 

All these above factors give the different ways of solving the MOTSP. The categories of MOEA given by the 

above factors are follows:  

 

State of art Computational Algorithms: 

a. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) 

b. Multi-objective Genetic Algorithm 

c. NSGA II 

d. Multi-objective Ant colony optimization 

e. Multi-objective Particle swarm optimization 

 
 

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) 
 

MOEA/D  [16] is a general EA framework for dealing with MOPs. Like generic MOEAs, a MOEA/D starts with 

an initial population of candidate solutions, in an iteration it generates some new trial solutions and 

selects the fittest ones to the next iteration; and it repeats the process until some termination conditions 

are satisfied. One of the major advantages of MOEA/D is that it is very easy to design local search operator 

within it using well-developed single-objective optimization algorithms. In MOEA/D, an MOTSP is 

decomposed into a set of scalar objective sub-problems and a probabilistic model, using both priori and 

learned information, is built to guide the search for each sub-problem. By the cooperation of neighbor sub-

problems, MOEA/D could optimize all the sub-problems simultaneously and thus find an approximation to 

the original MOTSP in a single run [30] [31] [16]. This idea is realized by solution cooperation in 

neighborhood, i.e., the solutions in the same neighborhood are used to generate new trial solutions, and 

the new trial solutions only update the old solutions in the same neighborhood. The following two notations 

are extremely important in an MOEA/D [17].  

 

Sub-problem: a multi-objective optimization problem is decomposed into a set of scalar objective problems 

and each of them is called a sub-problem. Hopefully, the optimal solution of the ith sub-problem gi(π) lies in 

the PS (PF) of the original problem. 

 

Neighborhood: The neighborhood Bi = (i1, i2, . . . , iK ) of the ith sub-problem contains the indices of similar 

sub-problems, i.e., the ijth (j = 1, . . . , K) sub-problems are the most similar ones to the ith sub-problem. 

 

Sub-problem definition: In [16] Tchebycheff approach is used to define the sub-problems as given follows: 

 

 
 

Where λi = (λi1, . . . , λim)T is a weight vector with the ith sub-problem, z∗ = (z∗1 , . . . , z∗m )T is a reference 

point. Reference point weakly dominates all the other solutions in the population. It is clear that all the 

sub-problems are with the same form and can only be differentiated by the weight vectors. If two vectors 

are close to each other, the corresponding sub-problems should be similar to each other and their optima 

should also be close in both the decision and objective spaces in most cases. By using the weight vectors, 

the neighborhood could be determined before the algorithm execution.  A Probabilistic model 𝑃𝑖 stores 

information extracted from the population for the 𝑖𝑡ℎ sub-problem and mating process will be continued. 

MOEA/D framework follows. 

 

MOEA/D Algorithm framework 
 

The following steps are followed in the MOEA/D algorithm framework [18] [16]. First MOEA/D converts an 

MOTSP into N sub-problems and randomly generates a solution for each sub-problem. Then initialize the 

reference point z∗ followed by Initialize the weight vectors, neighborhood and probability matrix for each 

sub-problem. For each sub-problem i = 1,…, N, do Sample a new solution be a unvisited city by randomly 

selecting according to the probability and repeat the process until the whole tour is constructed. Then do 

update of reference point, Update solutions Set and Update probability model. If the stopping conditions 

are satisfied, then stop; otherwise do the process again. Algorithm 1 explains the MOEA/D working 

process. 
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---------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------- 

Algorithm 1: MOEA/D 

---------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------ ------- 

 

Input: N: number of SOSPs (scalar optimization sub-problems) ; W: number of the neighbors for each 

SOSP;  ⅄1, . . .,  ⅄N: uniformly distributed weight vectors; pc: crossover rate; pm: mutation rate. 

 

Initialization 

1. Set EP = Ø (External Population) 

2. For each _i, calculate the W closest weight vectors, ⅄i(1), . . .,⅄i(W), by Euclidean distance and set ϕ(i) = 

{i(1), . . ., i(W)}. 

3. Generate an initial population x1,… xN and evaluate fu(xj)for each individual 

4. Initialize z = (z1,…, zm) 

Repeat 

5. For i = 1 to N do 

Reproduction:   

6. Generate a new solution y by two individuals xu and xl using crossover and mutation operators, where u, 

l ∈ ϕ(i) 

Improvement:  

7. Improve y by using a problem-specific improvement repair operator, which is optional. 

Update of z:  

8. For j = 1,…, m, if fj(y) < zj, set zj= fj(y) 

9. Update of neighboring solutions 

Update of EP: 

10. Remove those solutions dominated by y from EP and add y to EP if it is not dominated by any member 

in EP 

Termination: 

11. Until stopping criteria are satisfied, output EP 

---------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------- 

 

In [19], Algorithm decomposes the population into „s‟ scalar optimization sub-problems according to the 

Tchebycheff  approach.  It follows a two-chromosome representation for individual‟s representation. The 

first chromosome locates the cities while the second chromosome indicates which vehicle is to be 

assigned to visit the city specified in the first chromosome, which improves the performance of the 

algorithm.  A chemical reaction optimization based decomposition method is introduced in [6]. It follows 

the same steps as MOEA/D algorithm framework; in addition to that a chemical collision stage is followed 

after initialization stage. A Parallel Procedure for Dynamic Multi-objective TSP [21] follows the 

decomposition method to decompose the problems and follow the parallel execution of the sub-problems 

for time efficient process. In [21] objectives are represented in the form of matrix, in which we can 

increase the number of objectives for optimization. But the number of objectives affects directly the 

execution time. In [31] different approaches in MOEA/D are listed to solve the MOTSP.  

 

Multi-objective Genetic Algorithm 
 

Multi Objective Genetic Algorithm (MOGA) was given by Fonseca et al [4] [13]. It is an extension of single 

objective optimization algorithm. The rank to an individual is assigned based on the number of solutions in 

the population by which it is dominated. GA has two main parts, an evolution function and a fitness 

function.  In the case of the MOTSP, the parameters produced by the evolution function might be the order 

of the nodes through which the path will go.  The fitness function in that same case would return the total 

length of the path found.  The GA would then compare fitness values for each input string and assign 

priority to the ones that returns lower path lengths and other objectives. Based on the objective values the 

best solutions will be produced. The framework of the MOEA was explained in [14] [24]. By following it 

MOGA steps are explained below. 

 

Framework of MOGA 
 

MOGA starts with initial population and assign the fitness value to the individuals and apply the Evolution 

operator on the individuals. Do this process until satisfaction criteria met and finally it will produce the best 

path for MOTSP. Algorithm 2 explains the MOGA working process. 

 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------- ----- 

Algorithm 2: MOGA 

----------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------ 

Input: Populationsize, Problemsize, Pcrossover, Pmutation 

Output: Sbest 

Population <- InitializePopulation (Populationsize, Problemsize) 

EvaluatePopulation (Population) 

Sbest <- GetBestSolution (Population) 

While (~StopCondition()) 

 Parents <- SelectParents (Population, Populationsize) 



SPECIAL ISSUE: Computer Science 

www.iioab.org    | Jayamoorthi et al. 2017 | IIOABJ | Vol. 8 | 2 | 223-233 | 

 

227 

C
O

M
P

U
TE

R
 S

C
IE

N
C

E
 

 Children <- Ø 

 For (Parent1, Parent2  € Parents) 

  Child1, Child2 <- Crossover (Parent1, Parent2, Pcrossover) 

  Children <- Mutate (Child1, Pmutation) 

Children <- Mutate (Child2, Pmutation) 

 End 

 EvaluatePopulation (Children) 

 Sbest <- GetBestSolution (Children) 

 Population <- Replace (Population, Children) 

End 

Return (Sbest) 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

 

GA can solve problems with non-parametrical problems, multi-dimensional, non-continuous and non-

differential optimization problems. But Genetic Algorithm has weaker local search ability [14]. During the 

later period of Hierarchical Genetic Algorithm, the fitness converges, and less superior individuals are 

produced. However, Hybrid Simulated Annealing Algorithm can make it jump out of the erroneous zone of 

local optimum. Due to the compatibility of Genetic Algorithm, it is feasible to combine Simulated Annealing 

Algorithm and Hierarchical Genetic Algorithm to form the modified Simulated Annealing Genetic Algorithm 

[8]. The modified Simulated Annealing Genetic Algorithm can sooner achieve a better global optimum 

solution. The reasons are: the suffix structure design of chromosome reduced the space of the solution, 

the self-adaptive genetic operator and double crossover and mutation improved „premature convergence 

problem‟; the introduction of Simulated Annealing Algorithm stretched the fitness and enhanced the local 

search ability. 

 

Multiple traveling salesman problem was solved using GA in [5]. Two types of GAs were developed in it. 

The first one is a multi-objective GA that uses the sum of the route distance of each salesman to estimate 

the overall distance, and the standard deviation of the routes to estimate the balance. The second is a 

mono-objective GA with a fitness function that combines these two objectives by the use of a parameter. 

GA is modified into discrete GA and combined with fuzzy technique [34] in order to solve multi-objective 

problem. The proposed algorithm is able to find better result in shorter computational time. Xiaomei Sun 

[69] solved the Intelligent Transportation Systems (ITS) using improved Genetic Algorithm. It divides the 

population into subgroups and do the selection operation and recombine the subgroups followed by 

crossover and mutation operation. In [19] MOGA is used to solve vehicle routing problem. 

 

Non-dominated Sorting Genetic Algorithm-II (NSGAII) 
 

Non-dominated Sorting Genetic Algorithm-II (NSGAII) was introduced by Deb et al. [13]. It is an improved 

version of NSGA. The rank of every solution is computed based on how many number of solutions it 

dominates. In order to maintain the diversity of a population the algorithm finds average distance of two 

neighbors on either side of a solution along each of the objectives. The calculated distance is called 

crowding distance of that solution. For generating mating pool for next generation, selection of solutions is 

performed based on rank and crowding distance. The concept of dominance is used to find the best 

individual. It follows: 

 

Concept of dominance  
The concept of dominance is applied to multi-objective problems to compare two solution candidates 𝑋1, 

𝑋2, and determine if a solution dominates the other one. In particular, the dominance is a method for the 

classification of the solutions which ensures the selection of the best solution in the resulting population 

𝑅𝑡. 
 

Definition [6]: Given two solutions 𝑋1 and 𝑋2, solution 𝑋1 dominates solution 𝑋2, if the following 

conditions are satisfied:  

1. Solution 𝑋1 is not worse than 𝑋2 for all the objectives;  

2. Solution 𝑋1 is strictly better than 𝑋2 for at least one objective.  

 

Using these dominance concept individuals are ranked. When two solutions have the same rank then a 

solution that has higher crowding distance is selected for mating. The algorithm selects the solutions for 

the next generation based on following policy: select best solutions out of union of the best parents and 

best offspring (obtained after application of genetic operators). The following criteria are used for selection 

of the best solutions from the union: fitness and spread. As the algorithm selects the best solutions from 

the union, it does not require extra memory to preserve elite solutions. The NSGA II algorithm framework 

follows [27] [28] [29]. 

 

NSGA II Algorithm Framework  
 

It starts with the initial population and assigns the rank for each individual. Then crowding distance is 

calculated for each individual. Based on the rank and crowding distance of the individuals best solutions 

are selected for crossover and mutation operations.  Until the stopping criteria met the steps are repeated. 
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-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Algorithm 3: NSGA II 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------

Input: Population size , problemSize, P crossover , P mutation 

Output: children 

 

Population <- InitializePopulation (PopulationSize , ProblemSize) 

EvaluateAgainstObjectiveFunctions(Population) 

FastNondominatedSort(Poplation) 

Selected <- SelectParentsByRank(Population, Population size ) 

Children <- CrossoveAndMutation (Selected, P crossover, P mutation) 

While (~ StopCondition()) 

 EvaluateAgainstObjectiveFunctions(Children) 

 Union <- Merge (Population, Children) 

 Fronts <- FastNondominatedSort (Union) 

 Parents <- Ø 

Front L<- Ø 

 

For (Front i € Fronts) 

CrowdingDistanceAssignment (Front i) 

If (Size (Parents) + Size (Fronts i) > Population size) 

FrontL <- i 

Break() 

          Else 

Parents <- Merge (Parents, Front i) 

          End 

End 

If (Size (Parents) + Size (Fronts i) < Population size) 

Front L <- SortByRankAndDistance (Front L) 

 For (P1 to PPopulation size – SizeFront L) 

        Parents <- Pi 

End 

End  

Selected <- SelectPrentByRankAndDistance (Parents, Population Size) 

Population <- Children 

Children <- CrossoverAndMutation(Selected, Pcrossover, Pmutation 

End 

Return (Children) 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

 

In [6], Author proposed a methodology based on the non-dominated sorting genetic algorithm NSGA-II to 

solve the Multiple TSP. It follows the same algorithm framework given above but the number of salesman 

will be more than one.  An improved NSGA II is implemented in [40]. Specifically, a layer strategy according 

to need is proposed to avoid generating unnecessary non-dominated fronts. The arena‟s principle is also 

adopted to construct non-dominated set, so as to reduce the count of dominance comparison. In addition, 

an order crossover like operator and an inversion mutation operator are adopted for MOTSP. 

 

Non-dominated sorting differential evolution algorithm for the minimization of route based fuel 

consumption multi-objective vehicle routing problems is introduced in [31] [29]. It uses the hybrid version 

of NSGA II to solve the routing problem by optimizing the fuel consumption.  MOTSP is solved using two 

algorithms based on Differential Evolution, and the third one is based on NSGA II. The algorithms solve 2 

to 5 objective functions TSP in [27] [28]. Vehicle routing problem with uncertain travel cost is solved using 

NSGA II in [5] [48]. 

 

Multi-objective Ant Colony Optimization (ACO) 
 

Ant Colony Optimization (ACO) is a population-based meta-heuristic inspired by the pheromone trail laying 

and following behavior of some real ant species. ACO was originally designed for solving single-objective 

combinatorial optimization, and later it has proven to be one of the most successful algorithms for 

modeling discrete optimization problems. Due to notable results on these applications, ACO algorithms 

were soon extended to tackle problems with more than one objective (MOPs), called multi-objective ACO 

(MOACO), most of these algorithms have different design choices and focus in terms of Pareto optimally, 

that is, they do not make a priori assumptions about the decisions maker‟s preferences. So it gives the 

best result in real time problem solving. 

 

ACO implementation mainly consists of two stages: tour construction and pheromone update. The process 

of tour construction and pheromone update is applied iteratively until a termination condition is met (such 

as a set number of iterations). Both the tour construction and pheromone update stages can be performed 

independently [17].  The main idea in this algorithm is that the behavior of each individual ant produces an 

emergent behavior in the colony.  When applied to the MOTSP, individual agents (“ants”) traverse the 

graph of the problem, leaving a chemical (pheromone) trail behind them.  At each node it comes to, an ant 
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must decide which edge to take to the next node.  This is done by checking each edge for pheromone 

concentration and applying a probability function to the decision of which edge to choose.  The higher the 

concentration of pheromone, the more likely the ant is to choose that edge.  Also, to avoid stagnation in 

travel, the pheromone is given an evaporation rate so that at each iteration the pheromone loses a certain 

percentage on each edge. The MOACO algorithm framework is explains the above given steps to solve 

MOTSP.  

 

MOACO Algorithm Framework 
 

The algorithm maintains: (I) τ 1, ..., τK, where τ j is the current pheromone matrix for group j, storing its 

learned knowledge about the sub-region of PF that it aims at approximating; (II) η1, ..., ηN, where ηi is the 

heuristic information matrix for sub-problem i, which is predetermined before the construction solution 

starts; (III) EP, which is the external archive containing all the non-dominated solutions found so far. 

Algorithm 4 explains the working process of MOACO. 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

Algorithm 4: MOACO 

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  

Define Original pheromone 

 For iteration=1 to i= (1,2,3…n) 

     For ant=1 to i = (1,2,3…n) 

          Random start node 

   Do while node < i 

           Select next node 

   Loop 

         Next End Loop ant 

         Calculate Multi – objective function 

        For ant=1 to i=(1,2,3…n) 

  Do while node < i 

       Update pheromone 

  Loop 

  Checking pheromone upper and pheromone lower 

        Next End Loop ant 

 Next End loop iteration 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

All the problems using MOACO follow the above MOACO algorithm framework. MOACO can be combined 

with Genetic Algorithm and MOEA/D to give better performance. In [42], a hybridized algorithmic approach 

to solve 4- dimensional Travelling Salesman Problem is introduced. The algorithm is a hybridization of 

rough set based ant colony optimization (rACO) with genetic algorithm (GA). In this the initial solutions are 

produced by ACO which act as a selection operation of GA and then GA is developed with a virgin extended 

rough set based selection (7-point scale), comparison crossover and generation dependent mutation. The 

development of rACO-GA is in general form and it can be applied in other discrete problems such as 

network optimization, graph theory, solid transportation problems, vehicle routing, covering salesman 

problem, VLSI chip design, industrial information integration, information management, supply chain, 

airline industry, etc. ACO is combined with PSO and used to solve TSP which gives good result [2].   

 

In [30] [24] ACO is implemented to solve multi objective problems combined with Genetic Algorithm. 

Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multi-objective optimization problem 

into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving 

one sub-problem. All the ants are divided into a few groups, and each ant has several neighboring ants. An 

ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During 

the search, each ant also records the best solution found so far for its sub-problem. To construct a new 

solution, an ant combines information from its group‟s pheromone matrix, its own heuristic information 

matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors, 

and updates its current solution if it has found a better one in terms of its own objective. ACO is used to 

solve Multi-objective Bus Route Planning.  

 
Multi-objective Particle Swarm Optimization (MOPSO) 
 

Particle Swarm Optimization (PSO) was given by (Kennedy and Eberhart 1995) [15]. This method is 

inspired by the social behavior of animals living swarm. Initially, they tried to simulate the ability of birds to 

fly synchronously and their ability to change direction suddenly while remaining optimal training. The 

particles are individuals and they move into hyperspace research based on limited information: 

 

1. Each particle has a memory which enables to store the best point at which it has already passed and it 

tends to return to that point. 

2. Each particle is informed of the best known point in its neighborhood and it will tend to go to that point. 

 

The movement of a particle tends to follow her go her own way or particle tends to return to the best site in 

which it has already passed or the Particle tends to move toward the best ever achieved by its neighbors. 

The position of each particle is modified according to its own experience and that of its neighbors. To make 

the PSO capable to handle MOP the following modifications are done. 
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General modifications on PSO to handle MOPs are: (1) External Archive Maintenance (2) Select Global 

Leaders (3) Update Personal Best (4) Mutation Operator (Perturbation). PSO produce a single solution and 

the solution of a problem with multiple objectives is not a single solution (as in global optimization). 

Instead, in the multi-objective optimization, we aim to find different solutions (called Pareto Optimal Set) 

using MOPSO. By following these steps MOPSO framework is explained below.  

 

MOPSO framework 
 

Initialize swarm population and velocity. Do the Fitness evaluation and Pareto dominance for ranking 

particles (solutions). Based on the ranking of individuals Personal Best (Pbest) swarm population is stored 

on to the memory and non-dominated solutions are stored in External Archive. Particles Select global 

leaders from External Archive and compute PSO equation. Using fitness rank individuals are mutated.  The 

new Personal Best are updated and maintained on external archive. If satisfaction criteria met then stop 

the process else continue [15]. Algorithm 5 explains the working of MOPSO. 

 

---------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------- 

Algorithm 5: MOPSO 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

Begin 

Initialize Swarm 

Initialize leaders in an external Archive 

Quality (Leaders) 

g=0; 

While g < gmax  

     For each Particle 

 Select leader 

 Update Position 

 Mutation 

Evaluation 

Update pbest 

    End For  

Update leaders in the external Archive 

Quality (leaders) 

g++ 

End while 

Report results in the external Archive 

End 

---------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------  

 

In [15] MOTSP is solved using MOPSO. In multi-objective Particle Swarm Optimization (MOPSO), a ranking 

operator is applied to the population in a predefined iteration to build an initial archive using €-dominance 

to select the best solutions for mating. It uses the advantage of Pareto approach which is based on the 

concept of external archive with the rapidity of convergence of PSO as to minimize the total distance 

traveled by a particle and minimize the total time.  

 

RESULTS 
 

This section studies the effectiveness of the listed five MOEA algorithms. Then, we evaluate the overall 

performance of MOEA algorithms by comparing its Performance measures. The associated parameters are 

defined below. 

 

Performance measures 

To evaluate the performance of the MOEA algorithms, we employ the following widely recognized 

performance measuring metrics. Let PFref be a reference set of solutions well approximating the true PF, 

and PFknown be the set of non-dominated solutions obtained by an algorithm.  

 

Approximation set [34]: An approximation set is defined by Zitzler et al. as follows: let A  be a set of 

objective vectors. A is called an approximation set if any element of A does not dominate or is not equal to 

any other objective vector in A. The set of all approximation sets is denoted as Z. The result of solving a 

real-world problem usually is an approximation set A and not the Pareto optimal front PF*. 

Cardinality metrics: the cardinality of A refers to the number of solutions that exists in A. Intuitively; a larger 

number of solutions are preferred. 

Accuracy metrics: this aspect refers directly to the convergence of A. In other words, it indicates how 

distant A is from the theoretical Pareto optimal front PF*. Notice that when the Pareto optimal front is 

unknown, a reference set R is considered instead. 

Diversity metrics: distribution and spread are two very closely related facets. The distribution refers to the 

relative distance among solutions in A, while the spread refers to the range of values covered by the 

solutions in A. The spread is also known as ”the extent” of an approximation set. 
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Maximum spread (MS) [34]: MS reflects how well the true PF is covered by the points in PFknown through 

the hyperboxes formed by the extreme function values observed in PFref and PFknown. 

Hypervolume (HV): HV also known as S metric, hyper-area is an unary metric that measures the size of the 

objective space covered by an approximation set. A reference point must be used to calculate the 

mentioned covered space. HV considers all three aspects: accuracy, diversity and cardinality. 

Inverted generational distance (IGD) [34]: IGD is defined as the average distance from each point v in PFref 

to its nearest counter-part in PFknown, as follows: 

 

  

Where d(v, PFknown) is the Euclidean distance (in the objective space)between solution v in PFref and its 

nearest solution in PFknown and |PFref| is the number of solutions in PFref. IGD measures the convergence 

and diversity of an obtained non-dominated solution set. This metric is commonly used and a lower IGD 

indicates a better overall performance of an algorithm. 

Average Computational Time (ACT): ACT is the average running time consumed by an algorithm over 30 

runs. This metric is a direct indicator of the computational complexity of an algorithm. 

 

Result comparison 
 

IGD reflects the overall performance of an algorithm regarding the quality of the obtained PFknown. So we 

compared all the listed MOEA algorithms using IGD. We computed the IGD of the algorithms for 10 runs 

with randomly generated cities. The IGD of MOEA/D, NSGA II, MOGA, MOACO and MOPSO algorithms are 

shown in the [Table 1]. RGC represents Randomly Generated Cities. 

 

Table 1:  Results of IGD of the MOEA algorithms 
 

RGC/ 
Algori
thms 

MOEA/D NSGA II MOGA MOACO MOPSO 

1 0.00 0.00 0.89 1.50 2.07 

2 0.00 0.29 1.33 1.72 2.39 

3 0.00 0.50 1.42 2.06 2.46 

4 0.54 1.08 1.68 2.38 2.48 

5 0.77 1.22 2.01 2.26 2.56 

6 0.80 1.50 2.10 2.53 2.63 

7 0.76 1.36 2.34 2.56 2.96 

8 0.62 1.25 2.56 3.06 3.76 

9 0.17 1.46 2.60 3.16 3.96 

10 0.20 1.37 2.50 3.28 4.45 

 

As mentioned in the IGD definition, lower IGD indicates a better overall performance of an algorithm. From 

the [Table 1], it is clear that MOEA/D is having the lower IGD in more number of runs compared to other 

algorithms, then followed by NSGA II, MOGA, MOACO and MOPSO algorithms. The below [Fig. 2] shows the 

result of IGD metric performance of the five algorithms.  From the [Fig. 2] it is observed that when the 

number of cities is increasing, the IGD of NSGA, MOGA, MOACO and MOPAS algorithms are also increasing 

and the starting value of IGD is also very high. But in MOEA/D the IGD value is zero and when the number 

of cites is increasing value of IGD is going in a constant way. So from the definition of IGD, it is known that 

MOEA/D is having good diversity and convergence. All the other four algorithms are lacking in their 

performance with respect to IGD. So with respect to IGD, MOEA/D is giving best performance. 

 

 
Fig. 2:  IGD of MOEA algorithms. 

…………………………………………………………………………………………………………………............... 
The Average Computational Time (ACT) is also calculated to find the best algorithm among the five to solve 

MOTSP with respect to time complexity. The ACT of the MOEA are listed in the below [Table 2]. ACT is 

measure in seconds.  
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Table 2:  Average Computational time (ACT) (Sec) of MOEA Algorithms 
 

RGC/Algori
thm 

variants 

MOEA/D NSGA II MOGA MOACO MOPSO 

1 5.63 15.31 18.80 23.75 26.83 

2 7.05 23.53 25.45 35.68 26.04 

3 17.09 61.52 50.28 56.57 27.41 

4 34.23 60.73 102.28 134.85 179.02 

5 34.24 93.42 105.78 170.47 228.61 

6 38.83 120.38 170.03 230.78 240.99 

7 41.44 196.29 240.09 399.76 503.51 

8 89.21 266.27 450.34 630.54 782.52 

9 134.92 747.23 876.22 934.23 1027.34 

10 484.71 958.91 1021.34 1194.25 1324.86 

 

For the [Table 2], MOEA/D is having the minimum computational time. NSGA II algorithm took almost three 

times more ACT than MOEA/D. Other algorithms are giving even higher time complexity. The ACT result of 

the algorithms is shown in the [Fig. 3]. When the number of cities is increasing the ACT also increases. 

MOEA/D has the lower computational time compared to other algorithms. So with respect to ACT also, 

MOEA/D is the best algorithm to solve MOTSP.  

 

From the result analysis, MOEA/D is the best algorithm to solve MOTSP in all aspects. NSGA II is also giving 

good performance only but it is good when the number of objectives considered is only two [11] [13]. 

MOGA is giving good performance for stable environment but not for dynamic environment and the local 

search ability is also not good [35] [13]. 

 

 
 

Fig. 3: ACT (sec) of MOEA Algorithms. 

………………………………………………………………………………………………………………………………… 

 
MOACO is performing well in dynamic environment but in ACO starting and destination nodes should be 

defined at earlier. MOPSO is good in global search but the convergence and local search are not at the 

expected level to solve MOTSP. MOEA/D is giving better performance in all aspect compared to other 

algorithms which is proved from the IGD and ACT analyses of the algorithms [18] [11] [17] [16].  

 

CONCLUSION  
 

In this paper the problem of TSP is explained in order to understand the concept and need of MOTSP 

which optimizes more objectives to find the best solutions. There are many methods to solve the MOTSP. 

Among those Multi-Objective Evolutionary Algorithms are the best methods to solve it efficiently.  By 

evolving a population of solutions, multi-objective evolutionary algorithms (MOEAs) are able to approximate 

the Pareto optimal set in a single run. It results in nearest optimal solution within a reasonable time by 

optimizing many objectives simultaneously. The MOEA algorithms used to solve MOTSP are explained with 

its algorithm framework in section II. Each and every algorithm is best suited in some situation or 

environment to solve it. Among listed MOEA algorithms MOEA/D is giving the best solution for the MOTSP.  
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