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ABSTRACT 
 
In this paper, we are going to generalize the Frenet-Serret formulas for the moving frames in the three dimensional space R^3, in the case 

that the whole space admits the general form of inner product. 
 

INTRODUCTION 
  
Vectors are used widely in physics and engineering to describe forces, velocities, angular momentum, and 

many other concepts. To obtain a definition that is both practical and precise, we shall describe an “arrow” 

in 𝑅3 by giving its starting point 𝑝 and the change, or vector 𝑣, necessary to reach its end point 𝑝 + 𝑣. 

Strictly speaking, 𝑣 is just a point of 𝑅3. A tangent vector 𝑣𝑝 to 𝑅3 consists of two points of 𝑅3, its vector 

part 𝑣 and its point of application 𝑝.   

 

A vector field 𝑉 on 𝑅3 is a map that assigns to each point 𝑝 of 𝑅3 a tangent vector 𝑉(𝑝) to 𝑅3 at 𝑝. There is 

a natural algebra of vector fields. At each point 𝑝, the values 𝑉(𝑝) and 𝑊(𝑝)  are in the same vector 

space, the tangent space 𝑇𝑝𝑅3, consequently, the formula for the addition is the same as for addition of 

maps, (𝑉 + 𝑊)(𝑝) = 𝑉(𝑝) + 𝑊(𝑝) or all 𝑝 ∈ 𝑅3.  

 

If 𝑓 is a real-valued map on 𝑅3 and 𝑉 is a vector field on 𝑅3, then 𝑓𝑉 is defined to be the vector field on 𝑅3 

such that (𝑓𝑉)(𝑝) = 𝑓(𝑝)𝑉(𝑝) for all 𝑝 ∈ 𝑅3. Let 𝑓 be a differentiable real-valued map on 𝑅3, and let 𝑣𝑝be 

a tangent vector to 𝑅3, then the number 𝑣𝑝[𝑓] = 𝑑

𝑑𝑡
𝑓(𝑝 + 𝑡𝑣)|𝑡=0 is called the derivative of 𝑓 with respect 

to 𝑣𝑝. It can be seen that, if 𝑣𝑝 = (𝑣1, 𝑣2, 𝑣3)𝑝 is a tangent vector to 𝑅3, then 𝑣𝑝[𝑓] = ∑ 𝑣𝑖
𝜕𝑓

𝜕𝑥𝑖

(𝑝) [1].  

 

If 𝑓 and 𝑔 be maps on 𝑅3, 𝑣𝑝 and 𝑤𝑝 tangent vectors, 𝑎 and 𝑏 numbers, then 

(𝑎𝑣𝑝 + 𝑏𝑤𝑝)[𝑓] = 𝑎𝑣𝑝[𝑓] + 𝑏𝑤𝑝[𝑓],  𝑣𝑝[𝑎𝑓 + 𝑏𝑔] = 𝑎𝑣𝑝[𝑓] + 𝑏𝑣𝑝[𝑔],  𝑣𝑝[𝑓𝑔] = 𝑣𝑝[𝑓]𝑔(𝑝) + 𝑓(𝑝)𝑣𝑝[𝑔]. 
 

For a vector field 𝑉, 𝑉[𝑓] is the real-valued map whose value at each point 𝑝 is the number 𝑉(𝑝)[𝑓]. 
Similarly, if 𝑓, 𝑔, ℎ are real-valued maps  𝑉, 𝑊,  are vector fields on 𝑅3,  and 𝑎, 𝑏 ∈ 𝑅, then 

(𝑓𝑉 + 𝑔𝑊)[ℎ] = 𝑓𝑉[ℎ] + 𝑔𝑊[ℎ], 𝑉[𝑎𝑓 + 𝑏𝑔] = 𝑎𝑉[𝑓] + 𝑏𝑉[𝑔], 𝑉[𝑓𝑔] = 𝑉[𝑓]𝑔 + 𝑓𝑉[𝑔]. 
 

Replacing 𝑓 by a vector field 𝑊 on  𝑅3 gives a vector field 𝑡 → 𝑊(𝑝 + 𝑡𝑣) on the smooth trajectory 𝑡 → 𝑝 +
𝑡𝑣. Then the derivative of 𝑊 with respect to 𝑣 will be the derivative of 𝑡 → 𝑊(𝑝 + 𝑡𝑣)  at 𝑡 = 0. In fact, if 𝑊 

be a vector field on 𝑅3, and 𝑣 be a tangent vector field to 𝑅3 at the point 𝑝, then the covariant derivative of 

𝑊 with respect to 𝑣 is the tangent vector ∇𝑣𝑊(𝑝) = 𝑑

𝑑𝑡
𝑊(𝑝 + 𝑡𝑣)|𝑡=0. Evidently ∇𝑣𝑊(𝑝) measures the 

initial rate of change of 𝑊(𝑝) as 𝑝 moves in the 𝑣 direction. If 𝑈1, 𝑈2, and 𝑈3 be the vector fields on 𝑅3 and   

𝑊 = ∑ 𝑤𝑖𝑈𝑖 is a vector field on 𝑅3, and 𝑣 is a tangent vector at 𝑝, then ∇𝑣𝑊(𝑝) = ∑ 𝑣𝑝[𝑤𝑖]𝑈𝑖 (𝑝).   

 

Moreover, if 𝑣 and 𝑤 be tangent vectors to 𝑅3 at 𝑝, and let 𝑌 and 𝑍 be vector fields on the general inner 

product space (𝑅3, 𝜎),  then for numbers 𝑎, 𝑏 and map 𝑓, we have 

∇(𝑎𝑣+𝑏𝑤)𝑌(𝑝) = 𝑎∇𝑣𝑌(𝑝) + 𝑏∇𝑤𝑌(𝑝),   ∇𝑣(𝑎𝑌 +  𝑏𝑍)(𝑝) = 𝑎∇𝑣𝑌(𝑝) + 𝑏∇𝑣𝑍(𝑝), ∇𝑣(𝑓𝑌)(𝑝) =

𝑣𝑝[𝑓]𝑌(𝑝) + 𝑓(𝑝)∇𝑣𝑌(𝑝), 𝑣𝑝[𝜎(𝑌, 𝑍)] = 𝜎(∇𝑣𝑌(𝑝), 𝑍(𝑝)) + 𝜎(𝑌(𝑝), ∇𝑣𝑍(𝑝)). 

 

Using the point wise principle, we can take the covariant derivative of a vector field 𝑊 with respect to a 

vector field 𝑉, rather than a single tangent vector 𝑣. The result is the vector field ∇𝑉𝑊 whose value at each 

point 𝑝 is ∇𝑉(𝑝)𝑊.  

  

It follows immediately from above considerations that if 𝑊 = ∑ 𝑤𝑖𝑈𝑖, then ∇ 𝑉𝑊 = ∑  𝑉[𝑤𝑖]𝑈𝑖. If 𝑓, 𝑔 be 

differentiable maps, 𝑎, 𝑏 ∈ 𝑅 and  𝑉, 𝑊, 𝑌, and 𝑍 be vector fields on 𝑅3, then as a result of the preceding 

identities we have,  ∇(𝑓𝑉+𝑔𝑊)𝑌 = 𝑓∇𝑉𝑌 + 𝑔∇𝑊𝑌, ∇𝑉(𝑎𝑌 +  𝑏𝑍) = 𝑎∇𝑉𝑌 + 𝑏∇𝑉𝑍, ∇𝑉(𝑓𝑌) = 𝑉[𝑓]𝑌 +
𝑓∇𝑉𝑌, 𝑉(𝜎(𝑌, 𝑍)) = 𝜎(∇𝑉𝑌, 𝑍) + 𝜎(𝑌, ∇𝑉𝑍) [1]. 

 

Frenet- Serret’s essential idea was very simple: To each point of a smooth trajectory, a frame is assigned, 

then using orthonormal expansion expresses the rate of change of the frame in terms of the frame itself.  

This, of course, is just what the Frenet- Serret formulas do in the case of a smooth trajectory [1, 2].  
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In the next, we shall carry out this scheme for the inner product space (𝑅3, 𝜎). We shall see that geometry 

of smooth trajectories and surfaces in (𝑅3, 𝜎) is not merely an analogue, but actually a corollary, of these 

basic results [2]. 

      

THE METHOD OF MOVING FRAMES  
 

If 𝐴(𝑝) = (𝑝, 𝑎(𝑝) and 𝐵(𝑝) = (𝑝, 𝑏(𝑝)) are vector fields on 𝑅3, then the inner product 𝜎(𝐴, 𝐵) of 𝐴 and 𝐵 

is the differentiable real-valued map on 𝑅 whose value at each point 𝑝 is 𝜎(𝑎(𝑝), 𝑏(𝑝)).  The norm ||𝐴|| of 

𝐴 is the real-valued map on  𝑅3 whose value at 𝑝 is ||𝑎(𝑝)||.  

Vector fields 𝑇1, 𝑇2, 𝑇3 on (𝑅3, 𝜎) constitute a frame field on (𝑅3, 𝜎) provided where 𝜎(𝑇𝑖 , 𝑇𝑗) = 𝛿𝑖𝑗(1 ≤

𝑖, 𝑗 ≤ 3) where 𝛿𝑖𝑗 is the Kronecker delta [3].   

 

    The following useful result is an immediate consequence of orthonormal expansion [3].  

 

Lemma 3.1. Let 𝑇1, 𝑇2, 𝑇3 be a frame field on (𝑅3, 𝜎). If 𝑉 is a vector field on 𝑅3, then 𝑉 = ∑ 𝑓𝑖𝑇𝑖, where the 

maps 𝑓𝑖 = 𝜎(𝑉, 𝑇𝑖). If 𝑉 = ∑ 𝑓𝑖𝑇𝑖  and  𝑊 = ∑ 𝑔𝑖𝑇𝑖, then 𝜎(𝑉, 𝑊) = ∑ 𝑓𝑖𝑔𝑖. In particular, ||𝑉|| = √∑ 𝑓𝑖
2 .   

 

THE COVARIANT DERIVATIVE OF A FREME FIELD  
 

The Frenet- Serret formulas express the derivatives of T, N, B in terms of T, N, B, and thereby define 

curvature and torsion. We shall now do the same thing with an arbitrary frame field 𝑇1, 𝑇2, 𝑇3 on (𝑅3, 𝜎),  

namely, express the covariant derivatives of these vector fields in terms of the vector fields themselves.  

We begin with the covariant derivative with respect to an arbitrary tangent vector 𝑣 at a point 𝑝. Then 

∇𝑣𝑇𝑖 = ∑ 𝑐𝑖𝑗(𝑣)𝑇𝑗(𝑝) for 𝑖, 𝑗 = 1,2,3. By orthonormal expansion the coefficients of these equations 

are 𝑐𝑖𝑗(𝑣) = 𝜎(∇𝑣𝑇𝑖 , 𝑇𝑗(𝑝)). A 1-form 𝑓 on 𝑅3 is a real-valued map on the set of all tangent vectors to 

𝑅3such that 𝑓 is linear at each point [4]. 

 

Lemma 4.1. Let 𝑇1, 𝑇2, 𝑇3 be a frame field on (𝑅3, 𝜎). For each tangent vector 𝑣 to 𝑅3 at the point 𝑝, 

let 𝑐𝑖𝑗(𝑣) be defined as above. Then each  𝑐𝑖𝑗 is a 1-form, and   𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 0. 

 

Proof. By definition,  𝑐𝑖𝑗 is a real-valued map on tangent vectors, so to verify that  𝑐𝑖𝑗 is a 1-form, it suffices 

to check the linearity condition. Using above considerations, we get, 

 

 𝑐𝑖𝑗(𝑎𝑣 + 𝑏𝑤) = 𝜎 (∇𝑎𝑣+𝑏𝑤𝑇𝑖 , 𝑇𝑗(𝑝)) = 𝜎(𝑎∇𝑣𝑇𝑖 + 𝑏∇𝑤𝑇𝑖 , 𝑇𝑗(𝑝)) 

= 𝑎𝜎(∇𝑣𝑇𝑖 , 𝑇𝑗(𝑝)) + 𝑏𝜎(∇𝑤𝑇𝑖 , 𝑇𝑗(𝑝)) =  𝑎𝑐𝑖𝑗(𝑣) + 𝑏 𝑐𝑖𝑗(𝑤). 

 

To prove that  𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 0 we show that  𝑐𝑖𝑗(𝑣) + 𝑐𝑗𝑖(𝑣) = 0 for every tangent vector 𝑣. By definition of 

frame field, 𝜎(𝑇𝑖 , 𝑇𝑗) = 𝛿𝑖𝑗 , and since each Kronecker delta has constant value 0 or 1,  then 𝑣[𝜎(𝑇𝑖 , 𝑇𝑗)] =

0, so the above considerations yields 𝜎 (∇𝑣𝑇𝑖 , 𝑇𝑗(𝑝)) + 𝜎(𝑇𝑖(𝑝), ∇𝑣𝑇𝑗) = 0 and the proof is complete [1, 5]. 

 

The definition  𝑐𝑖𝑗(𝑣) = 𝜎(∇𝑣𝑇𝑖 , 𝑇𝑗(𝑝))  shows that  𝑐𝑖𝑗(𝑣) is the initial rate at which 𝑇𝑖 rotates toward 𝑇𝑗 as 

𝑝 moves in the 𝑣 direction. Thus the 1-forms  𝑐𝑖𝑗 contain this information for all tangent vectors to 𝑅3.  

 

Theorem 4.2.  For any vector field 𝑉 on (𝑅3, 𝜎), ∇𝑉𝑇𝑖 = ∑  𝑐𝑖𝑗(𝑉) 𝑇𝑗(1 ≤ 𝑖, 𝑗 ≤ 3). In expanded form, 

∇𝑉𝑇1 =  𝑐12(𝑉)𝑇2 +  𝑐13(𝑉)𝑇3, ∇𝑉𝑇2 = −𝑐12(𝑉)𝑇1 +  𝑐23(𝑉)𝑇3,  ∇𝑉𝑇3 = − 𝑐13(𝑉)𝑇1 −  𝑐23(𝑉)𝑇2. 

 

Proof. Let 𝑖 be fixed and 𝑝 ∈ 𝑅3, then according to the previous  considerations   ∇𝑉(𝑝)𝑇𝑖 =

∑ 𝑐𝑖𝑗(𝑉(𝑝))𝑇𝑗(𝑝), so ∇𝑉𝑇𝑖 = ∑  𝑐𝑖𝑗(𝑉) 𝑇𝑗 . When 𝑖 = 𝑗, the skew-symmetry condition  𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 0  becomes 

 𝑐𝑖𝑖 = 0  for 𝑖 =1,2,3. Hence this condition has the effect of reducing the nine 1-forms  𝑐𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 3 to 

essentially only three, say 𝑐12, 𝑐13, 𝑐23.  

Thus in expanded form, the equations in Theorem 3.2, called moving frame equations, become ∇𝑉𝑇1 =
 𝑐12(𝑉)𝑇2 +  𝑐13(𝑉)𝑇3, ∇𝑉𝑇2 = −𝑐12(𝑉)𝑇1 +  𝑐23(𝑉)𝑇3,  ∇𝑉𝑇3 = − 𝑐13(𝑉)𝑇1 −  𝑐23(𝑉)𝑇2.  

 

These equations play a fundamental role in all the differential geometry of (𝑅3, 𝜎). The following theorem 

explains that they are generalized form of Frenet-Serret formulas,  

 

Theorem 4.3. Let 𝛽 be a unit-speed smooth trajectory in (𝑅3, 𝜎)  with 𝜅 > 0,  and suppose that 𝑇1, 𝑇2, 𝑇3 is 

a frame field on (𝑅3, 𝜎)   such that the restriction of these vector fields to 𝛽 gives the generalized Frenet- 

Serret frame field 𝑇, 𝑁, 𝐵 of 𝛽. Then  𝑐12(𝑇) = 𝜅,  𝑐13(𝑇) = 0,  𝑐23(𝑇) = 𝜏.  

 

Proof. First of all not that, if 𝑊 be a vector field defined on a region containing a regular smooth trajectory 

𝛼, then 𝑊𝛼: 𝑡 → 𝑊(𝛼(𝑡)), the vector field on 𝛼, satisfies  ∇𝛼′(𝑡)𝑊 = (𝑊𝛼)′(𝑡). Thus using the generalized 

Frenet-Serret formulas in [2] implies that 

http://www.iioab.org/


REGULAR ISSUE  

www.iioab.org    | Parsian. 2016 | IIOABJ | Vol. 7 | Suppl 5 | 261-264 | 
 

 

263 

 

 𝑐12(𝑇) = 𝜎(∇𝑇𝑇, 𝑁(𝑝)) = 𝜎 (∇𝛽′(𝑡)𝑇, 𝑁(𝑝)) = 𝜎((𝑇𝛽)′(𝑡), 𝑁(𝑝)) 

= 𝜎(𝜅𝑁(𝑝), 𝑁(𝑝)) = 𝜅,  

 𝑐13(𝑇) = 𝜎(∇𝑇𝐵, 𝐵(𝑝)) = 𝜎(∇𝛽′(𝑡)𝐵, 𝐵(𝑝)) = 𝜎((𝐵𝛽)′(𝑡), 𝐵(𝑝)) 

= 𝜎(−𝜏𝑁(𝑝), 𝐵(𝑝)) = 0, 

 𝑐23(𝑇) = 𝜎(∇𝑇𝑁, 𝐵(𝑝)) = 𝜎(∇𝛽′(𝑡)𝑁, 𝐵(𝑝)) = 𝜎((𝑁𝛽)′(𝑡), 𝐵(𝑝)) 

= 𝜎(−𝜅𝑇(𝑝) + 𝜏𝐵(𝑝), 𝐵(𝑝)) = 𝜏. 

 

Corollary 4.4. Let 𝛽 be a unit-speed smooth trajectory in (𝑅3, 𝜎)  with 𝜅 > 0,  and suppose that 𝑇1, 𝑇2, 𝑇3 is 

a frame field on (𝑅3, 𝜎) such that the restriction of these vector fields to b gives the General Frenet- Serret 

frame field 𝑇, 𝑁, 𝐵 of 𝛽 corresponding to 𝜎. Then  ∇𝑇𝑇 = 𝜅𝑁, ∇𝑇𝑁 = −𝜅𝑇 + 𝜏𝐵, ∇𝑇𝐵 = −𝜏𝐵.  

 

Since each regular smooth trajectory in (𝑅3, 𝜎)  has a unit speed reparametrization [2], we have, 

 

Corollary 4.5. Let 𝛽 be a smooth trajectory in (𝑅3, 𝜎)  with 𝜅 > 0,  and suppose that 𝑇1, 𝑇2, 𝑇3 is a frame 

field on (𝑅3, 𝜎) such that the restriction of these vector fields to b gives the general Frenet- Serret frame 

field 𝑇, 𝑁, 𝐵 of 𝛽 corresponding to 𝜎. Then  ∇𝑇𝑇 = 𝜅𝑣𝑁, ∇𝑇𝑁 = −𝜅𝑣𝑇 + 𝜏𝑣𝐵, ∇𝑇𝐵 = −𝜏𝑣𝐵. 

 

 

APPLICATIONS TO GRAVITATIONAL FIELD  
 

Let 𝑟, 𝜃, 𝑧 be the usual cylindrical coordinate maps on 𝑅3. We shall pick a unit vector field in the direction 

in which each coordinate increases when the other two are held constant. For 𝑟 this is evidently 𝑇1 =

(𝑥√(𝑥2 + 𝑦2)−1, 𝑦√(𝑥2 + 𝑦2)−1, 0) pointing straight out from the 𝑧 axis. Then 𝑇2 =

(−𝑦√(𝑥2 + 𝑦2)−1, 𝑥√(𝑥2 + 𝑦2)−1, 0)  points in the direction of increasing 𝜃. Finally, the direction of 𝑧 is, of 

course, straight up, so 𝑇3 = (0,0, 1

√2
). It is easy to check that 𝜎(𝑇𝑖 , 𝑇𝑗) = 𝛿𝑖𝑗 for 𝜎 defined as in [2], so this is 

a frame field defined  on all of 𝑅3 except the 𝑧 axis. We call it the cylindrical frame field on 𝑅3 [6].   

 

For an arbitrary differentiable vector field 𝑉, a computation yields  

∇𝑉𝑇1 = (−𝑦√(𝑥2 + 𝑦2)−1𝑣1 + 𝑥√(𝑥2 + 𝑦2)−1𝑣2)𝑇2, ∇𝑉𝑇2 = (𝑦√(𝑥2 + 𝑦2)−1𝑣1 − 𝑥√(𝑥2 + 𝑦2)−1𝑣2)𝑇1, 
∇𝑉𝑇3 = 0. 

 

In a similar way, a frame field 𝐽1, 𝐽2, 𝐽3 can be derived from the spherical coordinate functions 𝜌, 𝜃, 𝜑 on 

𝑅3 [6]. The unit vector field 𝐽1, in the direction of increasing 𝜌, points straight out from the origin; hence it 

can be expressed as   

𝐽1 = (𝑥√(𝑥2 + 𝑦2 + 𝑧2)−1, 𝑦√(𝑥2 + 𝑦2 + 𝑧2)−1, 𝑧√(𝑥2 + 𝑦2 + 𝑧2)−1). 

Similarly, the vector field for increasing 𝜃 and 𝜑 are 

𝐽2 = (−𝑦√(𝑥2 + 𝑦2)−1, 𝑥√(𝑥2 + 𝑦2)−1, 0) , 
𝐽3 =

(−𝑥𝑧√(𝑥2 + 𝑦2)−1(𝑥2 + 𝑦2 + 𝑧2)−1, −𝑦𝑧√(𝑥2 + 𝑦2)−1(𝑥2 + 𝑦2 + 𝑧2)−1, √(𝑥2 + 𝑦2)[2(𝑥2 + 𝑦2 + 𝑧2)]−1), 

respectively.  

 

By repeated use of the fundamental identity in trigonometry, we check that 𝐽1, 𝐽2, 𝐽3 is a frame field in 

(𝑅3, 𝜎), called the spherical frame field on 𝑅3, in which 𝜎 is defined as in [2]. Its actual domain of 

definition is 𝑅3 minus the 𝑧 axis, as in the cylindrical case. 

 

Newton’s law of gravitation states that a body of mass  𝑚1 exerts a force on a body of mass 𝑚2. The 

magnitude of the force is 𝐺𝑚1𝑚2𝑟−2, where 𝑟 is the distance between their centers of gravity and 𝐺 is a 

constant. The direction of the force on 𝑚2 is from 𝑚2 to 𝑚1. Thus if 𝑚1 lies at the origin of 𝑆, and  𝑚2 lies 

at 𝑥 ∈ 𝑆, the force on 𝑚2 is – 𝐺𝑚1𝑚2√(𝑥2 + 𝑦2 + 𝑧2)−3(𝑥, 𝑦, 𝑧). We must now face the fact that both 

bodies will move. However, if 𝑚1 is much greater than 𝑚2, its motion will be much less since acceleration 

is inversely proportional to mass.  

 

We therefore make the simplifying assumption that one of the bodies does not move, in the case of 

planetary motion, of course it is the sun that is assumed at rest. One might also proceed by taking the 

center of mass at the origin, without making this simplifying assumption. Let now the sun is at the origin of  

𝑆 and consider the vector field corresponding to a planet of given mass 𝑚.  

 

This field is then 𝑉(𝑥, 𝑦, 𝑧) = −𝑐√(𝑥2 + 𝑦2 + 𝑧2)−3(𝑥, 𝑦, 𝑧) where 𝑐 is a non-zero constant. 

Therefore, ∇𝑉𝑇1 = ∇𝑉𝑇2 = ∇𝑉𝑇3 = 0. i.e., the initial rate at which each unit vector field in cylindrical 

coordinate rotates toward another one, as point moves in the direction of gravitational field in (𝑅3, 𝜎), is 

zero. For an arbitrary differentiable vector field 𝑉, a similar computation yields,  𝑐23 =

−𝑦𝑧√(𝑥2 + 𝑦2 + 𝑧2)−1𝑣1 +𝑥𝑧√(𝑥2 + 𝑦2 + 𝑧2)−1𝑣2. Therefore, for the gravitational field 𝑐23 = 0, i.e., the 

initial rate at which the unit vector field 𝐽2 in spherical coordinate rotates toward 𝐽3, as point moves in the 

direction of gravitational field in (𝑅3, 𝜎),  is zero.  
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